BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30189725)

  • 1. Mechanisms of CO
    Yuan R; Xu S; Fu G
    J Org Chem; 2018 Oct; 83(19):11896-11904. PubMed ID: 30189725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the Coordinated Structures of Ag(I) Catalysts Affect the Outcomes of Carbon Dioxide Incorporation into Propargylic Amine: A DFT Study.
    Yuan R; Wei B; Fu G
    J Org Chem; 2017 Apr; 82(7):3639-3647. PubMed ID: 28225622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and Selectivity of Cooperatively Catalyzed Meyer-Schuster Rearrangement/Tsuji-Trost Allylic Substitution. Evaluation of Synergistic Catalysis by Means of Combined DFT and Kinetics Simulations.
    Kalek M; Himo F
    J Am Chem Soc; 2017 Aug; 139(30):10250-10266. PubMed ID: 28675701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method of tetramic acid synthesis: silver-catalyzed carbon dioxide incorporation into propargylic amine and intramolecular rearrangement.
    Ishida T; Kobayashi R; Yamada T
    Org Lett; 2014 May; 16(9):2430-3. PubMed ID: 24738940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibria and kinetics of N-hydroxymethylamine formation from aromatic exocyclic amines and formaldehyde. Effects of nucleophilicity and catalyst strength upon mechanisms of catalysis of carbinolamine formation¹.
    Abrams WR; Kallen RG
    J Am Chem Soc; 1976 Nov; 98(24):7777-89. PubMed ID: 23320306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of Triphosphine-Ligated Cu(I) Catalysts for Hydrogenation of CO
    Persaud RR; Fang Z; Zall CM; Appel AM; Dixon DA
    J Phys Chem A; 2021 Aug; 125(30):6600-6610. PubMed ID: 34297558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.
    Zheng A; Li S; Liu SB; Deng F
    Acc Chem Res; 2016 Apr; 49(4):655-63. PubMed ID: 26990961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base bifunctional and dielectric outer-sphere effects in heterogeneous catalysis: a comparative investigation of model primary amine catalysts.
    Bass JD; Solovyov A; Pascall AJ; Katz A
    J Am Chem Soc; 2006 Mar; 128(11):3737-47. PubMed ID: 16536548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts.
    Christopher P; Linic S
    J Am Chem Soc; 2008 Aug; 130(34):11264-5. PubMed ID: 18665594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NHC-Ag/Pd-Catalyzed Reductive Carboxylation of Terminal Alkynes with CO
    Yu D; Zhou F; Lim DS; Su H; Zhang Y
    ChemSusChem; 2017 Mar; 10(5):836-841. PubMed ID: 28044419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.
    Alcaide B; Almendros P
    Acc Chem Res; 2014 Mar; 47(3):939-52. PubMed ID: 24428670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambiphilic Molecules: From Organometallic Curiosity to Metal-Free Catalysts.
    Fontaine FG; Rochette É
    Acc Chem Res; 2018 Feb; 51(2):454-464. PubMed ID: 29308653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ag NPs decorated on a COF in the presence of DBU as an efficient catalytic system for the synthesis of tetramic acids via CO
    Ghosh S; Molla RA; Kayal U; Bhaumik A; Islam SM
    Dalton Trans; 2019 Apr; 48(14):4657-4666. PubMed ID: 30893416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide incorporation into alkyne compounds mediated by silver catalysts.
    Kikuchi S; Yamada T
    Chem Rec; 2014 Feb; 14(1):62-9. PubMed ID: 24420233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Lewis Base Ga
    Hu S; Wang W; Yue M; Wang G; Gao W; Cong R; Yang T
    ACS Appl Mater Interfaces; 2018 May; 10(18):15895-15904. PubMed ID: 29688689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable, Chemo- and Site-Selective Nitrene Transfer Reactions through the Rational Design of Silver(I) Catalysts.
    Alderson JM; Corbin JR; Schomaker JM
    Acc Chem Res; 2017 Sep; 50(9):2147-2158. PubMed ID: 28787131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive fluorescent detection and Lewis basicity of aliphatic amines.
    Oliveri IP; Di Bella S
    J Phys Chem A; 2011 Dec; 115(50):14325-30. PubMed ID: 22066575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microporous Nanotubes and Nanospheres with Iron-Catechol Sites: Efficient Lewis Acid Catalyst and Support for Ag Nanoparticles in CO
    Modak A; Bhanja P; Bhaumik A
    Chemistry; 2018 Sep; 24(53):14189-14197. PubMed ID: 29979469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated Lewis pairs--metal hydrides functioning as FLP bases.
    Jiang Y; Blacque O; Fox T; Berke H
    J Am Chem Soc; 2013 May; 135(20):7751-60. PubMed ID: 23617739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between the acid-base properties of the La2O3 catalyst and its methane reactivity.
    Chu C; Zhao Y; Li S; Sun Y
    Phys Chem Chem Phys; 2016 Jun; 18(24):16509-17. PubMed ID: 27265027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.