These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30189963)

  • 41. Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces.
    Qin J; Zhou D; Shi B; Chen F; Luo L; Kumar A; Wang C; Lin X; Sheng S; Xu W; Shang Z; Cheng C; Kuang Y; Lin WF; Xu H; Sun X
    Langmuir; 2020 Oct; 36(39):11422-11428. PubMed ID: 32862650
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioinspired Nanostructured Surfaces for On-Demand Bubble Transportation.
    Tang X; Xiong H; Kong T; Tian Y; Li WD; Wang L
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3029-3038. PubMed ID: 29320159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles.
    Sudersan P; Kappl M; Pinchasik BE; Butt HJ; Endlein T
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34581416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review.
    Yong J; Yang Q; Hou X; Chen F
    Front Chem; 2020; 8():828. PubMed ID: 33134266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Directional Transport of Underwater Bubbles on Solid Substrates: Principles and Applications.
    Lin F; Wo K; Fan X; Wang W; Zou J
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10325-10340. PubMed ID: 36802468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The measurement of contact angles on circular tubing surfaces using the captive bubble technique.
    Lelah MD; Grasel TG; Pierce JA; Cooper SL
    J Biomed Mater Res; 1985; 19(9):1011-5. PubMed ID: 4086489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment.
    Bartali R; Lamberti A; Bianco S; Pirri CF; Tripathi M; Gottardi G; Speranza G; Iacob E; Pugno N; Laidani N
    Langmuir; 2017 Nov; 33(45):12865-12872. PubMed ID: 29043815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Designing Flexible but Tough Slippery Track for Underwater Gas Manipulation.
    Wang X; Bai H; Yang J; Li Z; Wu Y; Yu C; Jiang L; Cao M
    Small; 2021 Feb; 17(8):e2007803. PubMed ID: 33522147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces.
    Zhu S; Bian Y; Wu T; Chen C; Jiao Y; Jiang Z; Huang Z; Li E; Li J; Chu J; Hu Y; Wu D; Jiang L
    Nano Lett; 2020 Jul; 20(7):5513-5521. PubMed ID: 32539420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Underwater Attachment of the Water-Lily Leaf Beetle
    Grohmann C; Cohrs AL; Gorb SN
    Biomimetics (Basel); 2022 Feb; 7(1):. PubMed ID: 35225918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oil-Grafted Track-Assisted Directional Transport of Water Droplets and Submerged Air Bubbles on Solid Surfaces.
    M A; Peethan A; George SD
    Langmuir; 2023 Feb; 39(5):1987-1996. PubMed ID: 36696539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioinspired Reversible Switch between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces.
    Lian Z; Xu J; Yu Z; Yu P; Ren W; Wang Z; Yu H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6573-6580. PubMed ID: 31742380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability.
    Chen MY; Jia ZH; Zhang T; Fei YY
    Soft Matter; 2018 Sep; 14(36):7462-7468. PubMed ID: 30175356
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater.
    Zhang X; Dong Y; He Z; Gong H; Xu X; Zhao M; Qin H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18174-18181. PubMed ID: 32202403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of surface wettability on gecko adhesion underwater.
    Peng ZL; Wang C; Chen SH
    Colloids Surf B Biointerfaces; 2014 Oct; 122():662-668. PubMed ID: 25139291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation.
    Huang KT; Yeh SB; Huang CJ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21021-9. PubMed ID: 26356193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Ultrafine Bubble Aeration on Janus Aluminum Foil Prepared by Laser Microfabrication.
    Tang J; Zhang Y; Yao Y; Dai N; Ge Z; Wu D
    Langmuir; 2021 Jun; 37(23):6947-6952. PubMed ID: 34060840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Femtosecond Laser-Structured Underwater "Superpolymphobic" Surfaces.
    Yong J; Zhan Z; Singh SC; Chen F; Guo C
    Langmuir; 2019 Jul; 35(28):9318-9322. PubMed ID: 31264877
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Rate Alkaline Water Electrolysis at Industrially Relevant Conditions Enabled by Superaerophobic Electrode Assembly.
    Li L; Laan PCM; Yan X; Cao X; Mekkering MJ; Zhao K; Ke L; Jiang X; Wu X; Li L; Xue L; Wang Z; Rothenberg G; Yan N
    Adv Sci (Weinh); 2023 Feb; 10(4):e2206180. PubMed ID: 36507566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.