These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30190399)

  • 1. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth.
    Johansson KO; Head-Gordon MP; Schrader PE; Wilson KR; Michelsen HA
    Science; 2018 Sep; 361(6406):997-1000. PubMed ID: 30190399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Covalently Bound Clusters in Resonantly Stabilized Radical Reactions and Implications for Carbonaceous Particle Growth.
    Wang H; Guan J; Gao J; Zhang J; Xu Q; Xu G; Jiang L; Xing L; Truhlar DG; Wang Z
    J Am Chem Soc; 2024 May; 146(19):13571-13579. PubMed ID: 38710105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study.
    Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G
    Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.
    Thomas AM; Lucas M; Yang T; Kaiser RI; Fuentes L; Belisario-Lara D; Mebel AM
    Chemphyschem; 2017 Aug; 18(15):1971-1976. PubMed ID: 28556602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium.
    Kaiser RI; Parker DS; Mebel AM
    Annu Rev Phys Chem; 2015 Apr; 66():43-67. PubMed ID: 25422849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Observation of Hydrocarbon Growth by Resonance-Stabilized Radical-Radical Chain Reaction.
    Couch DE; Zhang AJ; Taatjes CA; Hansen N
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27230-27235. PubMed ID: 34605134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons.
    Jin H; Xing L; Yang J; Zhou Z; Qi F; Farooq A
    J Phys Chem Lett; 2021 Aug; 12(33):8109-8114. PubMed ID: 34410145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effect of nickel clusters on the formation of incipient soot particles from polycyclic aromatic hydrocarbons via ReaxFF molecular dynamics simulations.
    Shabnam S; Mao Q; van Duin ACT; Luo KH
    Phys Chem Chem Phys; 2019 May; 21(19):9865-9875. PubMed ID: 31033994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional gas-phase preparation of the prototype polycyclic aromatic hydrocarbon naphthalene (C
    He C; Kaiser RI; Lu W; Ahmed M; Krasnoukhov VS; Pivovarov PS; Zagidullin MV; Azyazov VN; Morozov AN; Mebel AM
    Chem Sci; 2023 May; 14(20):5369-5378. PubMed ID: 37234886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition-Dehydrocyclization: The Third Way.
    Zhao L; Prendergast MB; Kaiser RI; Xu B; Ablikim U; Ahmed M; Sun BJ; Chen YL; Chang AHH; Mohamed RK; Fischer FR
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17442-17450. PubMed ID: 31482662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of Polycyclic Aromatic Hydrocarbon Soot Precursors: Kinetics and Equilibria.
    Menon A; Martin JW; Akroyd J; Kraft M
    J Phys Chem A; 2020 Dec; 124(48):10040-10052. PubMed ID: 33202128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.
    Sinha S; Rahman RK; Raj A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19262-19278. PubMed ID: 28702614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion.
    Lai JY; Elvati P; Violi A
    Phys Chem Chem Phys; 2014 May; 16(17):7969-79. PubMed ID: 24647536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical study on the effect of C
    Ruan S; Shi Y; Qin C; Xu K; He C; Zhang L
    Phys Chem Chem Phys; 2023 Jun; 25(24):16550-16558. PubMed ID: 37309216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase formation of the resonantly stabilized 1-indenyl (C
    Yang Z; Galimova GR; He C; Goettl SJ; Paul D; Lu W; Ahmed M; Mebel AM; Li X; Kaiser RI
    Sci Adv; 2023 Sep; 9(36):eadi5060. PubMed ID: 37682989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe
    Herring MP; Potter PM; Wu H; Lomnicki S; Dellinger B
    Proc Combust Inst; 2013; 34(1):1749-1757. PubMed ID: 25530732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-phase reactions of aryl radicals with 2-butyne: experimental and theoretical investigation employing the N-methyl-pyridinium-4-yl radical cation.
    Lam AK; Li C; Khairallah G; Kirk BB; Blanksby SJ; Trevitt AJ; Wille U; O'Hair RA; da Silva G
    Phys Chem Chem Phys; 2012 Feb; 14(7):2417-26. PubMed ID: 22249506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.