These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30190456)

  • 1. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids.
    Domingues EM; Arunachalam S; Nauruzbayeva J; Mishra H
    Nat Commun; 2018 Sep; 9(1):3606. PubMed ID: 30190456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Coating-free Superomniphobicity.
    Das R; Ahmad Z; Nauruzbayeva J; Mishra H
    Sci Rep; 2020 May; 10(1):7934. PubMed ID: 32404874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proof-of-Concept for Gas-Entrapping Membranes Derived from Water-Loving SiO2/Si/SiO2 Wafers for Green Desalination.
    Das R; Arunachalam S; Ahmad Z; Manalastas E; Syed A; Buttner U; Mishra H
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32176215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS).
    Gonzalez-Avila SR; Nguyen DM; Arunachalam S; Domingues EM; Mishra H; Ohl CD
    Sci Adv; 2020 Mar; 6(13):eaax6192. PubMed ID: 32258392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids.
    Liu TL; Kim CJ
    Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dramatically reducing the critical velocity of air cavity generation
    Wang Z; Liu X; Ji J; Jiao Y; Liu K
    Nanoscale; 2022 Aug; 14(31):11218-11226. PubMed ID: 35876103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ experiments to reveal the role of surface feature sidewalls in the Cassie-Wenzel transition.
    Hensel R; Finn A; Helbig R; Killge S; Braun HG; Werner C
    Langmuir; 2014 Dec; 30(50):15162-70. PubMed ID: 25496232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turning traditionally nonwetting surfaces wetting for even ultra-high surface energy liquids.
    Wilke KL; Lu Z; Song Y; Wang EN
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional Wetting of Liquids on "Janus" Nanostructure Arrays under Various Media.
    Ge P; Wang S; Liu W; Wang T; Yu N; Ye S; Shen H; Wu Y; Zhang J; Yang B
    Langmuir; 2017 Mar; 33(9):2177-2184. PubMed ID: 28195733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces.
    Kim DH; Kim S; Park SR; Fang NX; Cho YT
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33618-33626. PubMed ID: 34196537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures.
    Panter JR; Kusumaatmaja H
    J Phys Condens Matter; 2017 Mar; 29(8):084001. PubMed ID: 28092626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting at high capillary numbers.
    Blake TD; Dobson RA; Ruschak KJ
    J Colloid Interface Sci; 2004 Nov; 279(1):198-205. PubMed ID: 15380430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes.
    Rangel TC; Michels AF; Horowitz F; Weibel DE
    Langmuir; 2015 Mar; 31(11):3465-72. PubMed ID: 25714008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Removal of Highly Wetting Liquids and Ice on Quasi-Liquid Surfaces.
    Zhang L; Guo Z; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20084-20095. PubMed ID: 32255601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.
    Galvan Y; Phillips KR; Haumann M; Wasserscheid P; Zarraga R; Vogel N
    Langmuir; 2018 Jun; 34(23):6894-6902. PubMed ID: 29356538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.