BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30190538)

  • 21. miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data.
    Ahadi A; Sablok G; Hutvagner G
    Nucleic Acids Res; 2017 Apr; 45(6):e42. PubMed ID: 27903911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps.
    Chi SW; Zang JB; Mele A; Darnell RB
    Nature; 2009 Jul; 460(7254):479-86. PubMed ID: 19536157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating miRNA-mRNA regulatory networks using crosslinking immunoprecipitation methods for biomarker and target discovery in cancer.
    Mato Prado M; Frampton AE; Giovannetti E; Stebbing J; Castellano L; Krell J
    Expert Rev Mol Diagn; 2016 Nov; 16(11):1155-1162. PubMed ID: 27784183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts.
    Karagkouni D; Paraskevopoulou MD; Tastsoglou S; Skoufos G; Karavangeli A; Pierros V; Zacharopoulou E; Hatzigeorgiou AG
    Nucleic Acids Res; 2020 Jan; 48(D1):D101-D110. PubMed ID: 31732741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data.
    Bottini S; Hamouda-Tekaya N; Tanasa B; Zaragosi LE; Grandjean V; Repetto E; Trabucchi M
    Nucleic Acids Res; 2017 May; 45(9):e71. PubMed ID: 28108660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CLIPick: a sensitive peak caller for expression-based deconvolution of HITS-CLIP signals.
    Park S; Ahn SH; Cho ES; Cho YK; Jang ES; Chi SW
    Nucleic Acids Res; 2018 Nov; 46(21):11153-11168. PubMed ID: 30329090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins.
    Kishore S; Jaskiewicz L; Burger L; Hausser J; Khorshid M; Zavolan M
    Nat Methods; 2011 May; 8(7):559-64. PubMed ID: 21572407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome.
    Zhang Z; Xing Y
    Nucleic Acids Res; 2017 Sep; 45(16):9260-9271. PubMed ID: 28934506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational analysis of CLIP-seq data.
    Uhl M; Houwaart T; Corrado G; Wright PR; Backofen R
    Methods; 2017 Apr; 118-119():60-72. PubMed ID: 28254606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical considerations on performing and analyzing CLIP-seq experiments to identify transcriptomic-wide RNA-protein interactions.
    Chen X; Castro SA; Liu Q; Hu W; Zhang S
    Methods; 2019 Feb; 155():49-57. PubMed ID: 30527764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins.
    Garzia A; Meyer C; Morozov P; Sajek M; Tuschl T
    Methods; 2017 Apr; 118-119():24-40. PubMed ID: 27765618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of microRNA regulatory networks by integrating multidimensional high-throughput data.
    Yang JH; Qu LH
    Adv Exp Med Biol; 2013; 774():251-66. PubMed ID: 23377977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-linking and immunoprecipitation of nuclear RNA-binding proteins.
    Li Q; Uemura Y; Kawahara Y
    Methods Mol Biol; 2015; 1262():247-63. PubMed ID: 25555586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passenger strand loading in overexpression experiments using microRNA mimics.
    Søkilde R; Newie I; Persson H; Borg Å; Rovira C
    RNA Biol; 2015; 12(8):787-91. PubMed ID: 26121563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data.
    Drewe-Boss P; Wessels HH; Ohler U
    Genome Biol; 2018 Nov; 19(1):183. PubMed ID: 30384847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.
    González-Buendía E; Saldaña-Meyer R; Meier K; Recillas-Targa F
    Methods Mol Biol; 2015; 1288():413-28. PubMed ID: 25827894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data.
    Lu Y; Leslie CS
    PLoS Comput Biol; 2016 Jul; 12(7):e1005026. PubMed ID: 27438777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation (HITS-CLIP) reveals Argonaute-associated microRNAs and targets in Schistosoma japonicum.
    Zhao J; Luo R; Xu X; Zou Y; Zhang Q; Pan W
    Parasit Vectors; 2015 Nov; 8():589. PubMed ID: 26577460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.
    Wen J; Parker BJ; Jacobsen A; Krogh A
    RNA; 2011 May; 17(5):820-34. PubMed ID: 21389147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunoprecipitation and High-Throughput Sequencing of ARGONAUTE-Bound Target RNAs from Plants.
    Carbonell A
    Methods Mol Biol; 2017; 1640():93-112. PubMed ID: 28608336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.