These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30190586)

  • 1. Surface Plasmon Coupling in GaN:Eu Light Emitters with Metal-Nitrides.
    Fragkos IE; Tansu N
    Sci Rep; 2018 Sep; 8(1):13365. PubMed ID: 30190586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold.
    Lalisse A; Tessier G; Plain J; Baffou G
    Sci Rep; 2016 Dec; 6():38647. PubMed ID: 27934890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Plasmonic Group-4 Nitride Nanocrystals by Solid-State Metathesis.
    Karaballi RA; Humagain G; Fleischman BRA; Dasog M
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3147-3150. PubMed ID: 30645033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Plasmonics with Conductive Ternary Nitrides.
    Metaxa C; Kassavetis S; Pierson JF; Gall D; Patsalas P
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10825-10834. PubMed ID: 28266835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refractory Plasmonic Hafnium Nitride and Zirconium Nitride Thin Films as Alternatives to Silver for Solar Mirror Applications.
    Das P; Biswas B; Maurya KC; Garbrecht M; Saha B
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46708-46715. PubMed ID: 36195562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Light Emitters and UV Solar-Blind Avalanche Photodiodes based on III-Nitride Semiconductors.
    Liu B; Chen D; Lu H; Tao T; Zhuang Z; Shao Z; Xu W; Ge H; Zhi T; Ren F; Ye J; Xie Z; Zhang R
    Adv Mater; 2020 Jul; 32(27):e1904354. PubMed ID: 31599998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal Transduction Efficiencies of Plasmonic Group 4 Metal Nitride Nanocrystals.
    Karaballi RA; Esfahani Monfared Y; Dasog M
    Langmuir; 2020 May; 36(18):5058-5064. PubMed ID: 32338909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters.
    Zhao C; Ng TK; Wei N; Prabaswara A; Alias MS; Janjua B; Shen C; Ooi BS
    Nano Lett; 2016 Feb; 16(2):1056-63. PubMed ID: 26745217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refractory plasmonics: orientation-dependent plasmonic coupling in TiN and ZrN nanocubes.
    El-Saeed AH; Allam NK
    Phys Chem Chem Phys; 2018 Jan; 20(3):1881-1888. PubMed ID: 29296979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters.
    Fadil A; Ou Y; Iida D; Kamiyama S; Petersen PM; Ou H
    Nanoscale; 2016 Sep; 8(36):16340-16348. PubMed ID: 27714107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wafer-Scale Epitaxy of Flexible Nitride Films with Superior Plasmonic and Superconducting Performance.
    Zhang R; Li X; Meng F; Bi J; Zhang S; Peng S; Sun J; Wang X; Wu L; Duan J; Cao H; Zhang Q; Gu L; Huang LF; Cao Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60182-60191. PubMed ID: 34881876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.
    Estrin Y; Rich DH; Keller S; DenBaars SP
    J Phys Condens Matter; 2015 Jul; 27(26):265802. PubMed ID: 26076324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of high order plasmonic modes on ceramic nanodisks.
    Gosciniak J; Justice J; Khan U; Modreanu M; Corbett B
    Opt Express; 2017 Mar; 25(5):5244-5254. PubMed ID: 28380788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics of Efficiency Droop in GaN:Eu Light-Emitting Diodes.
    Fragkos IE; Dierolf V; Fujiwara Y; Tansu N
    Sci Rep; 2017 Dec; 7(1):16773. PubMed ID: 29196749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride.
    Gosciniak J; Atar FB; Corbett B; Rasras M
    Sci Rep; 2019 Apr; 9(1):6048. PubMed ID: 30988521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride-Semiconductor Interfaces.
    Yu MW; Ishii S; Shinde SL; Tanjaya NK; Chen KP; Nagao T
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56562-56567. PubMed ID: 33259198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement.
    Fadil A; Iida D; Chen Y; Ma J; Ou Y; Petersen PM; Ou H
    Sci Rep; 2014 Sep; 4():6392. PubMed ID: 25242090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances.
    Saleem MF; Peng Y; Xiao K; Yao H; Wang Y; Sun W
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
    Kempgens P; Britton J
    Magn Reson Chem; 2016 May; 54(5):371-6. PubMed ID: 26687421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.