These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A Solid-State Wire-Shaped Supercapacitor Based on Nylon/Ag/Polypyrrole and Nylon/Ag/MnO Zhang R; Wang X; Cai S; Tao K; Xu Y Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050240 [TBL] [Abstract][Full Text] [Related]
5. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO Wang J; Dong L; Xu C; Ren D; Ma X; Kang F ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208 [TBL] [Abstract][Full Text] [Related]
6. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles. Su F; Lv X; Miao M Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293 [TBL] [Abstract][Full Text] [Related]
7. Quasi-solid-state highly stretchable circular knitted MnO Park T; Jang Y; Park JW; Kim H; Kim SJ RSC Adv; 2020 Apr; 10(24):14007-14012. PubMed ID: 35498458 [TBL] [Abstract][Full Text] [Related]
8. A General Electrode Design Strategy for Flexible Fiber Micro-Pseudocapacitors Combining Ultrahigh Energy and Power Delivery. Li P; Li J; Zhao Z; Fang Z; Yang M; Yuan Z; Zhang Y; Zhang Q; Hong W; Chen X; Yu D Adv Sci (Weinh); 2017 Aug; 4(8):1700003. PubMed ID: 28852617 [TBL] [Abstract][Full Text] [Related]
9. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Choi C; Kim KM; Kim KJ; Lepró X; Spinks GM; Baughman RH; Kim SJ Nat Commun; 2016 Dec; 7():13811. PubMed ID: 27976668 [TBL] [Abstract][Full Text] [Related]
11. A Conductive and Highly Deformable All-Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance. Zhou J; Yu J; Shi L; Wang Z; Liu H; Yang B; Li C; Zhu C; Xu J Small; 2018 Dec; 14(51):e1803786. PubMed ID: 30398691 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics. Su F; Miao M Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526 [TBL] [Abstract][Full Text] [Related]
13. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070 [TBL] [Abstract][Full Text] [Related]
14. Electrodeposition of the MnO Seo W; Kim D; Kim S; Lee H Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300853 [TBL] [Abstract][Full Text] [Related]
15. The effects of deposition time and current density on the electrochemical performance of flexible and high-performance MnO Jia M; Cheng C; Cui L; Li Y; Jin XJ RSC Adv; 2020 Jan; 10(6):3544-3553. PubMed ID: 35497716 [TBL] [Abstract][Full Text] [Related]
16. Solution-Blown Aligned Nanofiber Yarn and Its Application in Yarn-Shaped Supercapacitor. Yang J; Mao Z; Zheng R; Liu H; Shi L Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859093 [TBL] [Abstract][Full Text] [Related]
17. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Kou L; Huang T; Zheng B; Han Y; Zhao X; Gopalsamy K; Sun H; Gao C Nat Commun; 2014 May; 5():3754. PubMed ID: 24786366 [TBL] [Abstract][Full Text] [Related]