These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30191176)
1. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176 [TBL] [Abstract][Full Text] [Related]
2. Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Single-Unit Electrophysiology. Seo KJ; Artoni P; Qiang Y; Zhong Y; Han X; Shi Z; Yao W; Fagiolini M; Fang H Adv Biosyst; 2019 Mar; 3(3):e1800276. PubMed ID: 32627399 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351 [TBL] [Abstract][Full Text] [Related]
4. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Ramezani M; Kim JH; Liu X; Ren C; Alothman A; De-Eknamkul C; Wilson MN; Cubukcu E; Gilja V; Komiyama T; Kuzum D Nat Nanotechnol; 2024 Apr; 19(4):504-513. PubMed ID: 38212523 [TBL] [Abstract][Full Text] [Related]
5. Transparent Electrophysiology Microelectrodes and Interconnects from Metal Nanomesh. Seo KJ; Qiang Y; Bilgin I; Kar S; Vinegoni C; Weissleder R; Fang H ACS Nano; 2017 Apr; 11(4):4365-4372. PubMed ID: 28391679 [TBL] [Abstract][Full Text] [Related]
11. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
12. A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing. Cui Y; Zhang F; Chen G; Yao L; Zhang N; Liu Z; Li Q; Zhang F; Cui Z; Zhang K; Li P; Cheng Y; Zhang S; Chen X Adv Mater; 2021 Aug; 33(34):e2100221. PubMed ID: 34278616 [TBL] [Abstract][Full Text] [Related]
13. Integrated Microprism and Microelectrode Array for Simultaneous Electrophysiology and Two-Photon Imaging across All Cortical Layers. Yang Q; Wu B; Castagnola E; Pwint MY; Williams NP; Vazquez AL; Cui XT Adv Healthc Mater; 2024 Sep; 13(24):e2302362. PubMed ID: 38563704 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional Nanomesh Enables Cellular-Resolution, Elastic Neuroelectronics. Ryu J; Qiang Y; Chen L; Li G; Han X; Woon E; Bai T; Qi Y; Zhang S; Liou JY; Seo KJ; Feng B; Fang H Adv Mater; 2024 Sep; 36(36):e2403141. PubMed ID: 39011796 [TBL] [Abstract][Full Text] [Related]
15. Recent Progress on Transparent Microelectrode-Based Soft Bioelectronic Devices for Neuroscience and Cardiac Research. Lu L ACS Appl Bio Mater; 2023 May; 6(5):1701-1719. PubMed ID: 37076978 [TBL] [Abstract][Full Text] [Related]
16. A floating metal microelectrode array for chronic implantation. Musallam S; Bak MJ; Troyk PR; Andersen RA J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683 [TBL] [Abstract][Full Text] [Related]
17. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740 [TBL] [Abstract][Full Text] [Related]
18. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Williams JC; Rennaker RL; Kipke DR Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339 [TBL] [Abstract][Full Text] [Related]