These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30191180)

  • 1. Accelerated ex situ breeding of
    Bull SE; Seung D; Chanez C; Mehta D; Kuon JE; Truernit E; Hochmuth A; Zurkirchen I; Zeeman SC; Gruissem W; Vanderschuren H
    Sci Adv; 2018 Sep; 4(9):eaat6086. PubMed ID: 30191180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.
    Seung D; Soyk S; Coiro M; Maier BA; Eicke S; Zeeman SC
    PLoS Biol; 2015 Feb; 13(2):e1002080. PubMed ID: 25710501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava.
    Luo S; Ma Q; Zhong Y; Jing J; Wei Z; Zhou W; Lu X; Tian Y; Zhang P
    Plant Mol Biol; 2022 Mar; 108(4-5):429-442. PubMed ID: 34792751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-Mediated Mutagenesis of the Granule-Bound Starch Synthase Gene in the Potato Variety Yukon Gold to Obtain Amylose-Free Starch in Tubers.
    Toinga-Villafuerte S; Vales MI; Awika JM; Rathore KS
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato.
    Salehuzzaman SN; Jacobsen E; Visser RG
    Plant Mol Biol; 1993 Dec; 23(5):947-62. PubMed ID: 8260633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia.
    Koehorst-van Putten HJ; Sudarmonowati E; Herman M; Pereira-Bertram IJ; Wolters AM; Meima H; de Vetten N; Raemakers CJ; Visser RG
    Transgenic Res; 2012 Feb; 21(1):39-50. PubMed ID: 21465166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz).
    Ceballos H; Sánchez T; Morante N; Fregene M; Dufour D; Smith AM; Denyer K; Pérez JC; Calle F; Mestres C
    J Agric Food Chem; 2007 Sep; 55(18):7469-76. PubMed ID: 17696358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach.
    Gupta S; Kumar A; Patel R; Kumar V
    Mol Biol Rep; 2021 May; 48(5):4851-4863. PubMed ID: 34114124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.
    Zhao SS; Dufour D; Sánchez T; Ceballos H; Zhang P
    Biotechnol Bioeng; 2011 Aug; 108(8):1925-35. PubMed ID: 21370230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Application in Canadian Public and Private Plant Breeding.
    Gleim S; Lubieniechi S; Smyth SJ
    CRISPR J; 2020 Feb; 3(1):44-51. PubMed ID: 32091256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits.
    Scheben A; Edwards D
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):218-225. PubMed ID: 29752075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Targeting to Starch 1 is essential for starchy endosperm development in barley.
    Zhong Y; Blennow A; Kofoed-Enevoldsen O; Jiang D; Hebelstrup KH
    J Exp Bot; 2019 Jan; 70(2):485-496. PubMed ID: 30407538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing.
    Dong H; Huang Y; Wang K
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34204760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch synthase II plays a crucial role in starch biosynthesis and the formation of multienzyme complexes in cassava storage roots.
    He S; Hao X; Wang S; Zhou W; Ma Q; Lu X; Chen L; Zhang P
    J Exp Bot; 2022 Apr; 73(8):2540-2557. PubMed ID: 35134892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights on the origin and development of waxy genotypes in major crop plants.
    Gaur VS; Sood S; Guzmán C; Olsen KM
    Brief Funct Genomics; 2024 May; 23(3):193-213. PubMed ID: 38751352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluation of transgenic potato plants expressing an antisense granule-bound starch synthase gene: increase of the antisense effect during tuber growth.
    Kuipers AG; Soppe WJ; Jacobsen E; Visser RG
    Plant Mol Biol; 1994 Dec; 26(6):1759-73. PubMed ID: 7532028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.