These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30191180)

  • 21. Natural Polymorphisms in Arabidopsis Result in Wide Variation or Loss of the Amylose Component of Starch.
    Seung D; Echevarría-Poza A; Steuernagel B; Smith AM
    Plant Physiol; 2020 Feb; 182(2):870-881. PubMed ID: 31694903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects.
    Ahmad S; Wei X; Sheng Z; Hu P; Tang S
    Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creating a zero amylose barley with high soluble sugar content by genome editing.
    Li Y; Jiang Y; Cao D; Dang B; Yang X; Fan S; Shen Y; Li G; Liu B
    Plant Mol Biol; 2024 Apr; 114(3):50. PubMed ID: 38656412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amylose in starch: towards an understanding of biosynthesis, structure and function.
    Seung D
    New Phytol; 2020 Dec; 228(5):1490-1504. PubMed ID: 32767769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects.
    Kashtwari M; Mansoor S; Wani AA; Najar MA; Deshmukh RK; Baloch FS; Abidi I; Zargar SM
    Mol Biol Rep; 2022 Jun; 49(6):5729-5749. PubMed ID: 34427889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing in fruit, ornamental, and industrial crops.
    Ramirez-Torres F; Ghogare R; Stowe E; Cerdá-Bennasser P; Lobato-Gómez M; Williamson-Benavides BA; Giron-Calva PS; Hewitt S; Christou P; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):499-528. PubMed ID: 33825100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Starch determination, amylose content and susceptibility to in vitro amylolysis in flours from the roots of 25 cassava varieties.
    Mejía-Agüero LE; Galeno F; Hernández-Hernández O; Matehus J; Tovar J
    J Sci Food Agric; 2012 Feb; 92(3):673-8. PubMed ID: 21953312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9.
    Li J; Jiao G; Sun Y; Chen J; Zhong Y; Yan L; Jiang D; Ma Y; Xia L
    Plant Biotechnol J; 2021 May; 19(5):937-951. PubMed ID: 33236499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic modification of cassava for enhanced starch production.
    Ihemere U; Arias-Garzon D; Lawrence S; Sayre R
    Plant Biotechnol J; 2006 Jul; 4(4):453-65. PubMed ID: 17177810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome editing of polyploid crops: prospects, achievements and bottlenecks.
    Schaart JG; van de Wiel CCM; Smulders MJM
    Transgenic Res; 2021 Aug; 30(4):337-351. PubMed ID: 33846956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties.
    Zhang J; Zhang H; Botella JR; Zhu JK
    J Integr Plant Biol; 2018 May; 60(5):369-375. PubMed ID: 29210506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-Based Mutagenesis of Starch Biosynthetic Genes in Sweet Potato (Ipomoea Batatas) for the Improvement of Starch Quality.
    Wang H; Wu Y; Zhang Y; Yang J; Fan W; Zhang H; Zhao S; Yuan L; Zhang P
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31547486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing.
    Dong L; Qi X; Zhu J; Liu C; Zhang X; Cheng B; Mao L; Xie C
    Plant Biotechnol J; 2019 Oct; 17(10):1853-1855. PubMed ID: 31050154
    [No Abstract]   [Full Text] [Related]  

  • 36. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China.
    Li Q; Pan Z; Deng G; Long H; Li Z; Deng X; Liang J; Tang Y; Zeng X; Tashi N; Yu M
    J Agric Food Chem; 2014 Nov; 62(47):11369-85. PubMed ID: 25345815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene-edited protein kinases and phosphatases in molecular plant breeding.
    Sojka J; Šamajová O; Šamaj J
    Trends Plant Sci; 2024 Jun; 29(6):694-710. PubMed ID: 38151445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translational Research: Exploring and Creating Genetic Diversity.
    Jacob P; Avni A; Bendahmane A
    Trends Plant Sci; 2018 Jan; 23(1):42-52. PubMed ID: 29126790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and validation of mutation points associated with waxy phenotype in cassava.
    do Carmo CD; Sousa MBE; Dos Santos Silva PP; Oliveira GAF; Ceballos H; de Oliveira EJ
    BMC Plant Biol; 2020 Apr; 20(1):164. PubMed ID: 32293293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.