These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30191205)

  • 1. Tuning core-shell interactions in tungsten carbide-Pt nanoparticles for the hydrogen evolution reaction.
    Jain A; Ramasubramaniam A
    Phys Chem Chem Phys; 2018 Sep; 20(36):23262-23271. PubMed ID: 30191205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides.
    Esposito DV; Hunt ST; Kimmel YC; Chen JG
    J Am Chem Soc; 2012 Feb; 134(6):3025-33. PubMed ID: 22280370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions.
    Chen ZY; Duan LF; Sheng T; Lin X; Chen YF; Chu YQ; Sun SG; Lin WF
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20594-20602. PubMed ID: 28562013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-carbide interactions: core-shells for catalytic use.
    Yates JL; Spikes GH; Jones G
    Phys Chem Chem Phys; 2015 Feb; 17(6):4250-8. PubMed ID: 25573603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition Metal Induced the Contraction of Tungsten Carbide Lattice as Superior Hydrogen Evolution Reaction Catalyst.
    Jin H; Chen J; Mao S; Wang Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22094-22101. PubMed ID: 29882655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts.
    Garg A; Milina M; Ball M; Zanchet D; Hunt ST; Dumesic JA; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8828-8833. PubMed ID: 28544178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Nanoscale Tungsten Carbide Enhanced Surface Carbon as a Platinum Support for the Hydrogen Evolution Reaction.
    Liu Z; Li Y; Fang J; Wan Q
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and activation of ethylene on tungsten carbide and platinum surfaces.
    Jimenez-Orozco C; Flórez E; Montoya A; Rodriguez JA
    Phys Chem Chem Phys; 2019 Aug; 21(31):17332-17342. PubMed ID: 31355380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals.
    Kim J; Kim H; Lee WJ; Ruqia B; Baik H; Oh HS; Paek SM; Lim HK; Choi CH; Choi SI
    J Am Chem Soc; 2019 Nov; 141(45):18256-18263. PubMed ID: 31621315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction.
    Hsu IJ; Kimmel YC; Jiang X; Willis BG; Chen JG
    Chem Commun (Camb); 2012 Jan; 48(7):1063-5. PubMed ID: 22158836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells.
    Göhl D; Garg A; Paciok P; Mayrhofer KJJ; Heggen M; Shao-Horn Y; Dunin-Borkowski RE; Román-Leshkov Y; Ledendecker M
    Nat Mater; 2020 Mar; 19(3):287-291. PubMed ID: 31844277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.
    Liu Y; Li GD; Yuan L; Ge L; Ding H; Wang D; Zou X
    Nanoscale; 2015 Feb; 7(7):3130-6. PubMed ID: 25611887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic activity of Co-nanocrystal-doped tungsten carbide arising from an internal magnetic field.
    Morishita M; Nozaki A; Yamamoto H; Fukumuro N; Mori M; Araki K; Sakamoto F; Nakamura A; Yanagita H
    RSC Adv; 2021 Apr; 11(23):14063-14070. PubMed ID: 35423950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.
    Sheng T; Lin X; Chen ZY; Hu P; Sun SG; Chu YQ; Ma CA; Lin WF
    Phys Chem Chem Phys; 2015 Oct; 17(38):25235-43. PubMed ID: 26351805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.
    Garcia-Esparza AT; Cha D; Ou Y; Kubota J; Domen K; Takanabe K
    ChemSusChem; 2013 Jan; 6(1):168-81. PubMed ID: 23255471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction.
    Cao Z; Li H; Zhan C; Zhang J; Wang W; Xu B; Lu F; Jiang Y; Xie Z; Zheng L
    Nanoscale; 2018 Mar; 10(11):5072-5077. PubMed ID: 29509197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.
    Ma R; Zhou Y; Chen Y; Li P; Liu Q; Wang J
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14723-7. PubMed ID: 26474079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.