BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30191643)

  • 1. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels.
    Lunzer M; Shi L; Andriotis OG; Gruber P; Markovic M; Thurner PJ; Ossipov D; Liska R; Ovsianikov A
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15122-15127. PubMed ID: 30191643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-mediated Formation and Patterning of Hydrogels for Cell Culture Applications.
    Sawicki LA; Kloxin AM
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27768057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodegradable hydrogels for dynamic tuning of physical and chemical properties.
    Kloxin AM; Kasko AM; Salinas CN; Anseth KS
    Science; 2009 Apr; 324(5923):59-63. PubMed ID: 19342581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering.
    Pérez-Madrigal MM; Shaw JE; Arno MC; Hoyland JA; Richardson SM; Dove AP
    Biomater Sci; 2020 Jan; 8(1):405-412. PubMed ID: 31729512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms.
    Kloxin AM; Tibbitt MW; Anseth KS
    Nat Protoc; 2010 Dec; 5(12):1867-87. PubMed ID: 21127482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks.
    McKinnon DD; Brown TE; Kyburz KA; Kiyotake E; Anseth KS
    Biomacromolecules; 2014 Jul; 15(7):2808-16. PubMed ID: 24932668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels.
    Kim J; Park Y; Tae G; Lee KB; Hwang SJ; Kim IS; Noh I; Sun K
    J Mater Sci Mater Med; 2008 Nov; 19(11):3311-8. PubMed ID: 18496734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of photodegradable macromers for conjugation and release of bioactive molecules.
    Griffin DR; Schlosser JL; Lam SF; Nguyen TH; Maynard HD; Kasko AM
    Biomacromolecules; 2013 Apr; 14(4):1199-207. PubMed ID: 23506440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile preparation of photodegradable hydrogels by photopolymerization.
    Ki CS; Shih H; Lin CC
    Polymer (Guildf); 2013 Apr; 54(8):2115-2122. PubMed ID: 23894212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-activatable prodrugs based on hyaluronic acid biomaterials.
    Ossipov DA; Romero AB; Ossipova E
    Carbohydr Polym; 2018 Jan; 180():145-155. PubMed ID: 29103490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction.
    Fu S; Dong H; Deng X; Zhuo R; Zhong Z
    Carbohydr Polym; 2017 Aug; 169():332-340. PubMed ID: 28504153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds.
    Zhang C; Dong Q; Liang K; Zhou D; Yang H; Liu X; Xu W; Zhou Y; Xiao P
    Int J Biol Macromol; 2018 Nov; 119():270-277. PubMed ID: 30055272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE; Menzies DJ; Cameron AR; Ghosh P; Whitehead DL; Gronthos S; Zannettino AC; Cooper-White JJ
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Click chemistry-based biopolymeric hydrogels for regenerative medicine.
    Li Y; Wang X; Han Y; Sun HY; Hilborn J; Shi L
    Biomed Mater; 2021 Mar; 16(2):022003. PubMed ID: 33049725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.
    Sahoo S; Chung C; Khetan S; Burdick JA
    Biomacromolecules; 2008 Apr; 9(4):1088-92. PubMed ID: 18324776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of hyaluronic acid to enable click chemistry photo-crosslinking of hydrogels with tailorable degradation profiles.
    Buckley C; Montgomery TR; Szank T; Murray BA; Quigley C; Major I
    Int J Biol Macromol; 2023 Jun; 240():124459. PubMed ID: 37072064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release.
    LeValley PJ; Neelarapu R; Sutherland BP; Dasgupta S; Kloxin CJ; Kloxin AM
    J Am Chem Soc; 2020 Mar; 142(10):4671-4679. PubMed ID: 32037819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment.
    Tamura M; Yanagawa F; Sugiura S; Takagi T; Sumaru K; Kanamori T
    Sci Rep; 2015 Oct; 5():15060. PubMed ID: 26450015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation.
    Truong VX; Ablett MP; Richardson SM; Hoyland JA; Dove AP
    J Am Chem Soc; 2015 Feb; 137(4):1618-22. PubMed ID: 25590670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.