BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30191643)

  • 41. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-enzymatically crosslinked hyaluronic acid hydrogel as a long-time 3D stem cell culture system.
    Gao F; Li J; Wang L; Zhang D; Zhang J; Guan F; Yao M
    Biomed Mater; 2020 Jun; 15(4):045013. PubMed ID: 31995791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Injectable DMEM-induced phenylboronic acid-modified hyaluronic acid self-crosslinking hydrogel for potential applications in tissue repair.
    Gao H; Yu C; Li Q; Cao X
    Carbohydr Polym; 2021 Apr; 258():117663. PubMed ID: 33593547
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry.
    Lee S; Park YH; Ki CS
    Int J Biol Macromol; 2016 Feb; 83():1-8. PubMed ID: 26616448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, Characterization, and Digital Light Processing of a Hydrolytically Degradable Hyaluronic Acid Hydrogel.
    Galarraga JH; Dhand AP; Enzmann BP; Burdick JA
    Biomacromolecules; 2023 Jan; 24(1):413-425. PubMed ID: 36516973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials.
    Li S; Pei M; Wan T; Yang H; Gu S; Tao Y; Liu X; Zhou Y; Xu W; Xiao P
    Carbohydr Polym; 2020 Dec; 250():116922. PubMed ID: 33049836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization.
    Polizzotti BD; Fairbanks BD; Anseth KS
    Biomacromolecules; 2008 Apr; 9(4):1084-7. PubMed ID: 18351741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradable and biocompatible hydrogels bearing a hindered urea bond.
    Ying H; Yen J; Wang R; Lai Y; Hsu JL; Hu Y; Cheng J
    Biomater Sci; 2017 Nov; 5(12):2398-2402. PubMed ID: 29067374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biocompatible hydrogels by oxime Click chemistry.
    Grover GN; Lam J; Nguyen TH; Segura T; Maynard HD
    Biomacromolecules; 2012 Oct; 13(10):3013-7. PubMed ID: 22970829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry.
    Gramlich WM; Kim IL; Burdick JA
    Biomaterials; 2013 Dec; 34(38):9803-11. PubMed ID: 24060422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.
    Nimmo CM; Shoichet MS
    Bioconjug Chem; 2011 Nov; 22(11):2199-209. PubMed ID: 21995458
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study.
    Atoufi Z; Kamrava SK; Davachi SM; Hassanabadi M; Saeedi Garakani S; Alizadeh R; Farhadi M; Tavakol S; Bagher Z; Hashemi Motlagh G
    Int J Biol Macromol; 2019 Oct; 139():1168-1181. PubMed ID: 31419553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering.
    Nimmo CM; Owen SC; Shoichet MS
    Biomacromolecules; 2011 Mar; 12(3):824-30. PubMed ID: 21314111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)-b-polypeptide as a potential pharmaceuticals delivery carrier.
    Zhao D; Tang Q; Zhou Q; Peng K; Yang H; Zhang X
    Soft Matter; 2018 Sep; 14(36):7420-7428. PubMed ID: 30187054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal changes in peg hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization.
    Nuttelman CR; Kloxin AM; Anseth KS
    Adv Exp Med Biol; 2006; 585():135-49. PubMed ID: 17120782
    [No Abstract]   [Full Text] [Related]  

  • 60. Thiol-Epoxy "Click" Chemistry to Engineer Cytocompatible PEG-Based Hydrogel for siRNA-Mediated Osteogenesis of hMSCs.
    Huynh CT; Liu F; Cheng Y; Coughlin KA; Alsberg E
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25936-25942. PubMed ID: 29986132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.