These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30191658)

  • 1. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts.
    Lew TTS; Wong MH; Kwak SY; Sinclair R; Koman VB; Strano MS
    Small; 2018 Nov; 14(44):e1802086. PubMed ID: 30191658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism.
    Wong MH; Misra RP; Giraldo JP; Kwak SY; Son Y; Landry MP; Swan JW; Blankschtein D; Strano MS
    Nano Lett; 2016 Feb; 16(2):1161-72. PubMed ID: 26760228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers.
    Kwak SY; Lew TTS; Sweeney CJ; Koman VB; Wong MH; Bohmert-Tatarev K; Snell KD; Seo JS; Chua NH; Strano MS
    Nat Nanotechnol; 2019 May; 14(5):447-455. PubMed ID: 30804482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts.
    Santana I; Jeon SJ; Kim HI; Islam MR; Castillo C; Garcia GFH; Newkirk GM; Giraldo JP
    ACS Nano; 2022 Aug; 16(8):12156-12173. PubMed ID: 35943045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells.
    Serag MF; Kaji N; Gaillard C; Okamoto Y; Terasaka K; Jabasini M; Tokeshi M; Mizukami H; Bianco A; Baba Y
    ACS Nano; 2011 Jan; 5(1):493-9. PubMed ID: 21141871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [PLANT GENETIC TRANSFORMATION USING CARBON NANOTUBES FOR DNA DELIVERY].
    Burlaka OM; Pirko YV; Yemets AI; Blume YB
    Tsitol Genet; 2015; 49(6):3-12. PubMed ID: 26841488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif.
    Santana I; Wu H; Hu P; Giraldo JP
    Nat Commun; 2020 Apr; 11(1):2045. PubMed ID: 32341352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanomaterials and DNA: from Molecular Recognition to Applications.
    Sun H; Ren J; Qu X
    Acc Chem Res; 2016 Mar; 49(3):461-70. PubMed ID: 26907723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, Purification, and Application of Protoplasts and Transient Expression Systems in Plants.
    Chen K; Chen J; Pi X; Huang LJ; Li N
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids.
    Lee H
    J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coating single-walled carbon nanotubes with phospholipids.
    Wu Y; Hudson JS; Lu Q; Moore JM; Mount AS; Rao AM; Alexov E; Ke PC
    J Phys Chem B; 2006 Feb; 110(6):2475-8. PubMed ID: 16471843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami and G-Quadruplex Hybrid Complexes Induce Size Control of Single-Walled Carbon Nanotubes via Biological Activation.
    Atsumi H; Belcher AM
    ACS Nano; 2018 Aug; 12(8):7986-7995. PubMed ID: 30011182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing.
    Vairavapandian D; Vichchulada P; Lay MD
    Anal Chim Acta; 2008 Sep; 626(2):119-29. PubMed ID: 18790113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internalisation of cell-penetrating peptides into tobacco protoplasts.
    Mäe M; Myrberg H; Jiang Y; Paves H; Valkna A; Langel U
    Biochim Biophys Acta; 2005 May; 1669(2):101-7. PubMed ID: 15893512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.
    Jin H; Heller DA; Sharma R; Strano MS
    ACS Nano; 2009 Jan; 3(1):149-58. PubMed ID: 19206261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications.
    Alhassen H; Antony V; Ghanem A; Yajadda MM; Han ZJ; Ostrikov KK
    Chirality; 2014 Nov; 26(11):683-91. PubMed ID: 24811353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescence properties of graphene versus other carbon nanomaterials.
    Cao L; Meziani MJ; Sahu S; Sun YP
    Acc Chem Res; 2013 Jan; 46(1):171-80. PubMed ID: 23092181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles.
    Hu P; An J; Faulkner MM; Wu H; Li Z; Tian X; Giraldo JP
    ACS Nano; 2020 Jul; 14(7):7970-7986. PubMed ID: 32628442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.