These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects. Anitha A; Joseph J; Menon D; Nair SV; Nair MB Tissue Eng Part A; 2017 Apr; 23(7-8):345-358. PubMed ID: 28093043 [TBL] [Abstract][Full Text] [Related]
3. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration. Shamaz BH; Anitha A; Vijayamohan M; Kuttappan S; Nair S; Nair MB Nanotechnology; 2015 Oct; 26(40):405101. PubMed ID: 26373968 [TBL] [Abstract][Full Text] [Related]
4. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926 [TBL] [Abstract][Full Text] [Related]
5. In vivo evaluation of porous lithium-doped hydroxyapatite scaffolds for the treatment of bone defect. Luo Y; Li D; Zhao J; Yang Z; Kang P Biomed Mater Eng; 2018; 29(6):699-721. PubMed ID: 30282329 [TBL] [Abstract][Full Text] [Related]
6. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering. Guda T; Oh S; Appleford MR; Ong JL Int J Oral Maxillofac Implants; 2012; 27(2):288-94. PubMed ID: 22442766 [TBL] [Abstract][Full Text] [Related]
7. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis. Chiu CK; Lee DJ; Chen H; Chow LC; Ko CC J Mater Sci Mater Med; 2015 Feb; 26(2):92. PubMed ID: 25649517 [TBL] [Abstract][Full Text] [Related]
8. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Iviglia G; Cassinelli C; Torre E; Baino F; Morra M; Vitale-Brovarone C Acta Biomater; 2016 Oct; 44():97-109. PubMed ID: 27521494 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of osseointegration of staged or simultaneously placed dental implants with nanocomposite fibrous scaffolds in rabbit mandibular defect. V M; Iyer S; Menon D; Nair SV; Nair MB Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109864. PubMed ID: 31499998 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
11. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. Cai YZ; Wang LL; Cai HX; Qi YY; Zou XH; Ouyang HW J Biomed Mater Res A; 2010 Oct; 95(1):49-57. PubMed ID: 20740600 [TBL] [Abstract][Full Text] [Related]
12. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694 [TBL] [Abstract][Full Text] [Related]
13. Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Guo J; Meng Z; Chen G; Xie D; Chen Y; Wang H; Tang W; Liu L; Jing W; Long J; Guo W; Tian W Tissue Eng Part A; 2012 Jun; 18(11-12):1239-52. PubMed ID: 22320360 [TBL] [Abstract][Full Text] [Related]
14. Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study. Jaiswal AK; Dhumal RV; Ghosh S; Chaudhari P; Nemani H; Soni VP; Vanage GR; Bellare JR J Biomed Nanotechnol; 2013 Dec; 9(12):2073-85. PubMed ID: 24266262 [TBL] [Abstract][Full Text] [Related]
15. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Wang X; Zhang G; Qi F; Cheng Y; Lu X; Wang L; Zhao J; Zhao B Int J Nanomedicine; 2018; 13():117-127. PubMed ID: 29317820 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration. Li L; Zuo Y; Zou Q; Yang B; Lin L; Li J; Li Y ACS Appl Mater Interfaces; 2015 Oct; 7(40):22618-29. PubMed ID: 26406396 [TBL] [Abstract][Full Text] [Related]
17. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Boda SK; Almoshari Y; Wang H; Wang X; Reinhardt RA; Duan B; Wang D; Xie J Acta Biomater; 2019 Feb; 85():282-293. PubMed ID: 30605770 [TBL] [Abstract][Full Text] [Related]
18. Metformin-Incorporated Gelatin/Nano-Hydroxyapatite Scaffolds Promotes Bone Regeneration in Critical Size Rat Alveolar Bone Defect Model. Fang CH; Sun CK; Lin YW; Hung MC; Lin HY; Li CH; Lin IP; Chang HC; Sun JS; Chang JZ Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008984 [TBL] [Abstract][Full Text] [Related]
19. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
20. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]