These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30191887)

  • 41. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model.
    Kim J; McBride S; Donovan A; Darr A; Magno MH; Hollinger JO
    Biomed Mater; 2015 May; 10(3):035001. PubMed ID: 25953950
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.
    Rathbone CR; Guda T; Singleton BM; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomed Mater Res A; 2014 May; 102(5):1458-66. PubMed ID: 23776110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation.
    Chang HC; Yang C; Feng F; Lin FH; Wang CH; Chang PC
    J Formos Med Assoc; 2017 Dec; 116(12):973-981. PubMed ID: 28256366
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration.
    Taylor BL; Limaye A; Yarborough J; Freeman JW
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1131-1140. PubMed ID: 27017849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graded porous β-tricalcium phosphate scaffolds enhance bone regeneration in mandible augmentation.
    Yang J; Kang Y; Browne C; Jiang T; Yang Y
    J Craniofac Surg; 2015 Mar; 26(2):e148-53. PubMed ID: 25675019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eggshell Microparticle Reinforced Scaffolds for Regeneration of Critical Sized Cranial Defects.
    Wu X; Gauntlett O; Zhang T; Suvarnapathaki S; McCarthy C; Wu B; Camci-Unal G
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):60921-60932. PubMed ID: 34905346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneous chemistry in the 3-D state: an original approach to generate bioactive, mechanically-competent bone scaffolds.
    Tampieri A; Ruffini A; Ballardini A; Montesi M; Panseri S; Salamanna F; Fini M; Sprio S
    Biomater Sci; 2018 Dec; 7(1):307-321. PubMed ID: 30468436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical and biological characterization of alkaline substituted orthophosphate bone substitutes containing meta- and diphosphates.
    Klein M; Laschke MW; Holstein JH; Histing T; Pohlemann T; Menger MD; Garcia P
    Biomed Mater; 2017 Sep; 12(5):055007. PubMed ID: 28691695
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.
    Panseri S; Cunha C; D'Alessandro T; Sandri M; Russo A; Giavaresi G; Marcacci M; Hung CT; Tampieri A
    PLoS One; 2012; 7(6):e38710. PubMed ID: 22685602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects.
    Li JJ; Dunstan CR; Entezari A; Li Q; Steck R; Saifzadeh S; Sadeghpour A; Field JR; Akey A; Vielreicher M; Friedrich O; Roohani-Esfahani SI; Zreiqat H
    Adv Healthc Mater; 2019 Apr; 8(8):e1801298. PubMed ID: 30773833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A
    J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects.
    Helal MH; Hendawy HD; Gaber RA; Helal NR; Aboushelib MN
    J Prosthet Dent; 2019 Jan; 121(1):118-123. PubMed ID: 29961633
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.
    Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J
    Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.