BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30191934)

  • 1. An integrated nanocatalyst combining enzymatic and metal-organic framework catalysts for cascade degradation of organophosphate nerve agents.
    Li H; Ma L; Zhou L; Gao J; Huang Z; He Y; Jiang Y
    Chem Commun (Camb); 2018 Sep; 54(76):10754-10757. PubMed ID: 30191934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.
    Ng TK; Gahan LR; Schenk G; Ollis DL
    Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrocene-modified iron-based metal-organic frameworks as an enhanced catalyst for activating oxone to degrade pollutants in water.
    Zhang MW; Yang MT; Tong S; Lin KA
    Chemosphere; 2018 Dec; 213():295-304. PubMed ID: 30237042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand.
    Ma X; Zhang L; Xia M; Zhang X; Zhang Y
    J Hazard Mater; 2018 Aug; 355():65-73. PubMed ID: 29775879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing enzyme stability by construction of polymer-enzyme conjugate micelles for decontamination of organophosphate agents.
    Suthiwangcharoen N; Nagarajan R
    Biomacromolecules; 2014 Apr; 15(4):1142-52. PubMed ID: 24564717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates.
    Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A
    Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant.
    Islamoglu T; Ortuño MA; Proussaloglou E; Howarth AJ; Vermeulen NA; Atilgan A; Asiri AM; Cramer CJ; Farha OK
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1949-1953. PubMed ID: 29314562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme.
    Walker JP; Kimble KW; Asher SA
    Anal Bioanal Chem; 2007 Dec; 389(7-8):2115-24. PubMed ID: 17899031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of organophosphorus hydrolase by entrapment in silk fibroin: formation of a robust enzymatic material suitable for surface coatings.
    Dennis PB; Walker AY; Dickerson MB; Kaplan DL; Naik RR
    Biomacromolecules; 2012 Jul; 13(7):2037-45. PubMed ID: 22651251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent.
    Lei Y; Mulchandani P; Chen W; Wang J; Mulchandani A
    Biotechnol Bioeng; 2004 Mar; 85(7):706-13. PubMed ID: 14991648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a yeast biosensor-biocatalyst for the detection and biodegradation of the organophosphate paraoxon.
    Schofield DA; Westwater C; Barth JL; DiNovo AA
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1383-94. PubMed ID: 17665192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide.
    Moon Y; Jafry AT; Bang Kang S; Young Seo J; Baek KY; Kim EJ; Pan JG; Choi JY; Kim HJ; Han Lee K; Jeong K; Bae SW; Shin S; Lee J; Lee Y
    J Hazard Mater; 2019 Mar; 365():261-269. PubMed ID: 30447633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10 nm gold nanoparticles.
    Nita R; Trammell SA; Ellis GA; Moore MH; Soto CM; Leary DH; Fontana J; Talebzadeh SF; Knight DA
    Chemosphere; 2016 Feb; 144():1916-9. PubMed ID: 26547026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraoxon and parathion hydrolysis by aqueous molybdenocene dichloride (Cp2MoCl2): first reported pesticide hydrolysis by an organometallic complex.
    Kuo LY; Perera NM
    Inorg Chem; 2000 May; 39(10):2103-6. PubMed ID: 12526519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thionate versus Oxon: comparison of stability, uptake, and cell toxicity of ((14)CH(3)O)(2)-labeled methyl parathion and methyl paraoxon with SH-SY5Y cells.
    Bharate SB; Prins JM; George KM; Thompson CM
    J Agric Food Chem; 2010 Jul; 58(14):8460-6. PubMed ID: 20590114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-organic framework-based multienzyme cascade bioreactor for sensitive detection of methyl parathion.
    Chen D; Wang L; Wei J; Jiao T; Chen Q; Oyama M; Chen Q; Chen X; Chen X
    Food Chem; 2024 Jun; 442():138389. PubMed ID: 38219569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyoxometalate-metal organic framework-lipase: An efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid.
    Nobakht N; Faramarzi MA; Shafiee A; Khoobi M; Rafiee E
    Int J Biol Macromol; 2018 Jul; 113():8-19. PubMed ID: 29454949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.
    Li Y; Yu C; Yang B; Liu Z; Xia P; Wang Q
    Biosens Bioelectron; 2018 Apr; 102():307-315. PubMed ID: 29156406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications.
    Sheta SM; El-Sheikh SM; Abd-Elzaher MM
    Dalton Trans; 2018 Apr; 47(14):4847-4855. PubMed ID: 29541717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-immobilized metal-organic framework nanosheets as tandem catalysts for the generation of nitric oxide.
    Ling P; Qian C; Gao F; Lei J
    Chem Commun (Camb); 2018 Oct; 54(79):11176-11179. PubMed ID: 30229245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.