These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 30192228)

  • 1. Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway.
    Wang Z; Wu C; Aslanian A; Yates JR; Hunter T
    Elife; 2018 Sep; 7():. PubMed ID: 30192228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction.
    Bergink S; Ammon T; Kern M; Schermelleh L; Leonhardt H; Jentsch S
    Nat Cell Biol; 2013 May; 15(5):526-32. PubMed ID: 23624404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slx5/Slx8-dependent ubiquitin hotspots on chromatin contribute to stress tolerance.
    Höpfler M; Kern MJ; Straub T; Prytuliak R; Habermann BH; Pfander B; Jentsch S
    EMBO J; 2019 Jun; 38(11):. PubMed ID: 31015336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression.
    Rohira AD; Chen CY; Allen JR; Johnson DL
    J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation.
    Psakhye I; Castellucci F; Branzei D
    Mol Cell; 2019 Nov; 76(4):632-645.e6. PubMed ID: 31519521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of protein sumoylation in Saccharomyces cerevisiae.
    Wohlschlegel JA; Johnson ES; Reed SI; Yates JR
    J Biol Chem; 2004 Oct; 279(44):45662-8. PubMed ID: 15326169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage.
    Heckmann I; Kern MJ; Pfander B; Jentsch S
    Sci Rep; 2019 Nov; 9(1):17914. PubMed ID: 31784551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase.
    Capella M; Mandemaker IK; Martín Caballero L; den Brave F; Pfander B; Ladurner AG; Jentsch S; Braun S
    Nat Commun; 2021 Aug; 12(1):4918. PubMed ID: 34389719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases.
    Jalal D; Chalissery J; Hassan AH
    Nucleic Acids Res; 2017 Mar; 45(5):2242-2261. PubMed ID: 28115630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis.
    Higgins R; Kabbaj MH; Sherwin D; Howell LA; Hatcher A; Tomko RJ; Wang Y
    Cell Rep; 2020 Jul; 32(2):107898. PubMed ID: 32668237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast.
    Køhler JB; Tammsalu T; Jørgensen MM; Steen N; Hay RT; Thon G
    Nat Commun; 2015 Nov; 6():8827. PubMed ID: 26537787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods to study SUMO dynamics in yeast.
    Pabst S; Döring LM; Petreska N; Dohmen RJ
    Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality control of a transcriptional regulator by SUMO-targeted degradation.
    Wang Z; Prelich G
    Mol Cell Biol; 2009 Apr; 29(7):1694-706. PubMed ID: 19139279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and genetic associations of the Irc20 ubiquitin ligase with Cdc48 and SUMO.
    Richardson A; Gardner RG; Prelich G
    PLoS One; 2013; 8(10):e76424. PubMed ID: 24155900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro.
    Parker JL; Ulrich HD
    Biochem J; 2014 Feb; 457(3):435-40. PubMed ID: 24224485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II.
    Bhalla P; Vernekar DV; Gilquin B; Couté Y; Bhargava P
    Gene; 2019 Jun; 702():205-214. PubMed ID: 30593915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of SUMO-dependent ubiquitylation in vitro.
    Keusekotten K; Praefcke GJ
    Methods Mol Biol; 2012; 832():111-23. PubMed ID: 22350879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The polySUMOylation axis promotes nucleolar release of Tof2 for mitotic exit.
    Gutierrez-Morton E; Haluska C; Collins L; Rizkallah R; Tomko RJ; Wang Y
    Cell Rep; 2024 Jul; 43(7):114492. PubMed ID: 39002125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast.
    Chen X; Ding B; LeJeune D; Ruggiero C; Li S
    PLoS One; 2009; 4(4):e5267. PubMed ID: 19384408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMO enhances unfolding of SUMO-polyubiquitin-modified substrates by the Ufd1/Npl4/Cdc48 complex.
    Lee HG; Lemmon AA; Lima CD
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213703120. PubMed ID: 36574706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.