These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 30192228)
21. Altered Protein Abundance and Localization Inferred from Sites of Alternative Modification by Ubiquitin and SUMO. Ulman A; Levin T; Dassa B; Javitt A; Kacen A; Shmueli MD; Eisenberg-Lerner A; Sheban D; Fishllevich S; Levy ED; Merbl Y J Mol Biol; 2021 Oct; 433(21):167219. PubMed ID: 34464654 [TBL] [Abstract][Full Text] [Related]
22. Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Cieśla M; Makała E; Płonka M; Bazan R; Gewartowski K; Dziembowski A; Boguta M Mol Cell Biol; 2015 Apr; 35(7):1169-81. PubMed ID: 25605335 [TBL] [Abstract][Full Text] [Related]
24. Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions. Nie M; Aslanian A; Prudden J; Heideker J; Vashisht AA; Wohlschlegel JA; Yates JR; Boddy MN J Biol Chem; 2012 Aug; 287(35):29610-9. PubMed ID: 22730331 [TBL] [Abstract][Full Text] [Related]
25. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Verma R; Oania R; Fang R; Smith GT; Deshaies RJ Mol Cell; 2011 Jan; 41(1):82-92. PubMed ID: 21211725 [TBL] [Abstract][Full Text] [Related]
26. Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. Leśniewska E; Cieśla M; Boguta M Biochim Biophys Acta Gene Regul Mech; 2019 Jan; 1862(1):25-34. PubMed ID: 30342998 [TBL] [Abstract][Full Text] [Related]
27. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Chymkowitch P; Nguéa P A; Aanes H; Robertson J; Klungland A; Enserink JM Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1039-1044. PubMed ID: 28096404 [TBL] [Abstract][Full Text] [Related]
28. Desumoylation of RNA polymerase III lies at the core of the Sumo stress response in yeast. Nguéa P A; Robertson J; Herrera MC; Chymkowitch P; Enserink JM J Biol Chem; 2019 Dec; 294(49):18784-18795. PubMed ID: 31676685 [TBL] [Abstract][Full Text] [Related]
29. Small ubiquitin-related modifier pathway is a major determinant of doxorubicin cytotoxicity in Saccharomyces cerevisiae. Huang RY; Kowalski D; Minderman H; Gandhi N; Johnson ES Cancer Res; 2007 Jan; 67(2):765-72. PubMed ID: 17234788 [TBL] [Abstract][Full Text] [Related]
30. Cdc48/p97 segregase: Spotlight on DNA-protein crosslinks. Noireterre A; Stutz F DNA Repair (Amst); 2024 Jul; 139():103691. PubMed ID: 38744091 [TBL] [Abstract][Full Text] [Related]
31. Chromatin Association of Gcn4 Is Limited by Post-translational Modifications Triggered by its DNA-Binding in Saccharomyces cerevisiae. Akhter A; Rosonina E Genetics; 2016 Dec; 204(4):1433-1445. PubMed ID: 27770033 [TBL] [Abstract][Full Text] [Related]
32. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2. Eckhoff J; Dohmen RJ J Biol Chem; 2015 May; 290(19):12268-81. PubMed ID: 25833950 [TBL] [Abstract][Full Text] [Related]
33. The Regulation of Chromatin by Dynamic SUMO Modifications. Wilson NR; Hochstrasser M Methods Mol Biol; 2016; 1475():23-38. PubMed ID: 27631795 [TBL] [Abstract][Full Text] [Related]
34. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Ulrich HD; Davies AA Methods Mol Biol; 2009; 497():81-103. PubMed ID: 19107412 [TBL] [Abstract][Full Text] [Related]
35. Yeast RNA polymerase III transcription factors and effectors. Acker J; Conesa C; Lefebvre O Biochim Biophys Acta; 2013; 1829(3-4):283-95. PubMed ID: 23063749 [TBL] [Abstract][Full Text] [Related]
36. The Cdc48-20S proteasome degrades a class of endogenous proteins in a ubiquitin-independent manner. Islam MT; Ogura T; Esaki M Biochem Biophys Res Commun; 2020 Mar; 523(4):835-840. PubMed ID: 31954512 [TBL] [Abstract][Full Text] [Related]
37. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Gan J; Qiao N; Strahan R; Zhu C; Liu L; Verma SC; Wei F; Cai Q Rev Med Virol; 2016 Nov; 26(6):435-445. PubMed ID: 27550835 [TBL] [Abstract][Full Text] [Related]
38. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Hoege C; Pfander B; Moldovan GL; Pyrowolakis G; Jentsch S Nature; 2002 Sep; 419(6903):135-41. PubMed ID: 12226657 [TBL] [Abstract][Full Text] [Related]
39. A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. Albuquerque CP; Yeung E; Ma S; Fu T; Corbett KD; Zhou H PLoS One; 2015; 10(12):e0143810. PubMed ID: 26633173 [TBL] [Abstract][Full Text] [Related]
40. TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. Simms TA; Dugas SL; Gremillion JC; Ibos ME; Dandurand MN; Toliver TT; Edwards DJ; Donze D Eukaryot Cell; 2008 Dec; 7(12):2078-86. PubMed ID: 18849469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]