BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30192513)

  • 1. Mapping Transient Protein Interactions at the Nanoscale in Living Mammalian Cells.
    De Keersmaecker H; Camacho R; Rantasa DM; Fron E; Uji-I H; Mizuno H; Rocha S
    ACS Nano; 2018 Oct; 12(10):9842-9854. PubMed ID: 30192513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells.
    Jiang X; Sorkin A
    Mol Biol Cell; 2002 May; 13(5):1522-35. PubMed ID: 12006650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy.
    Sorkin A; McClure M; Huang F; Carter R
    Curr Biol; 2000 Nov; 10(21):1395-8. PubMed ID: 11084343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells.
    Nickerson A; Huang T; Lin LJ; Nan X
    PLoS One; 2014; 9(6):e100589. PubMed ID: 24963703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM).
    Nickerson A; Huang T; Lin LJ; Nan X
    J Vis Exp; 2015 Dec; (106):e53154. PubMed ID: 26779930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells.
    Hertel F; Mo GC; Duwé S; Dedecker P; Zhang J
    Cell Rep; 2016 Jan; 14(2):390-400. PubMed ID: 26748717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells.
    Wang S; Ding M; Chen X; Chang L; Sun Y
    Biomed Opt Express; 2017 Jun; 8(6):3119-3131. PubMed ID: 28663931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient Acceleration of Epidermal Growth Factor Receptor Dynamics Produces Higher-Order Signaling Clusters.
    Hiroshima M; Pack CG; Kaizu K; Takahashi K; Ueda M; Sako Y
    J Mol Biol; 2018 Apr; 430(9):1386-1401. PubMed ID: 29505756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Nanoscale Distribution of Protein Pairs by Proximity-Dependent Super-resolution Microscopy.
    Clowsley AH; Kaufhold WT; Lutz T; Meletiou A; Di Michele L; Soeller C
    J Am Chem Soc; 2020 Jul; 142(28):12069-12078. PubMed ID: 32551615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Ras-mediated pathways through PNRC-Grb2 interaction.
    Zhou D; Chen B; Ye JJ; Chen S
    Oncogene; 2004 Jul; 23(31):5394-404. PubMed ID: 15122321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internalization of the epidermal growth factor receptor: role in signalling.
    Sorkin A
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):480-4. PubMed ID: 11498013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.
    Yan R; Moon S; Kenny SJ; Xu K
    Acc Chem Res; 2018 Mar; 51(3):697-705. PubMed ID: 29443498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent immobilization of epidermal growth factor molecules for single-molecule imaging analysis of intracellular signaling.
    Ichinose J; Morimatsu M; Yanagida T; Sako Y
    Biomaterials; 2006 Jun; 27(18):3343-50. PubMed ID: 16499962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells.
    Del Piccolo N; Hristova K
    Biophys J; 2017 Sep; 113(6):1353-1364. PubMed ID: 28734476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling.
    Tan SL; Nakao H; He Y; Vijaysri S; Neddermann P; Jacobs BL; Mayer BJ; Katze MG
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5533-8. PubMed ID: 10318918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy.
    de Bakker BI; de Lange F; Cambi A; Korterik JP; van Dijk EM; van Hulst NF; Figdor CG; Garcia-Parajo MF
    Chemphyschem; 2007 Jul; 8(10):1473-80. PubMed ID: 17577901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling.
    Li S; Couvillon AD; Brasher BB; Van Etten RA
    EMBO J; 2001 Dec; 20(23):6793-804. PubMed ID: 11726515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.