These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30192727)

  • 1. Recovery of zinc and copper from copper smelter flue dust. Optimisation of sulphuric acid leaching.
    Gonzalez-Montero P; Iglesias-Gonzalez N; Romero R; Mazuelos A; Carranza F
    Environ Technol; 2020 Apr; 41(9):1093-1100. PubMed ID: 30192727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.
    Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC
    Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automobile shredded residue valorisation by hydrometallurgical metal recovery.
    Granata G; Moscardini E; Furlani G; Pagnanelli F; Toro L
    J Hazard Mater; 2011 Jan; 185(1):44-8. PubMed ID: 21051141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust.
    Jarošíková A; Ettler V; Mihaljevič M; Drahota P; Culka A; Racek M
    J Environ Manage; 2018 Mar; 209():71-80. PubMed ID: 29276995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.
    Jarošíková A; Ettler V; Mihaljevič M; Penížek V; Matoušek T; Culka A; Drahota P
    Environ Pollut; 2018 Jun; 237():83-92. PubMed ID: 29477118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching properties of electric arc furnace dust prior/following alkaline extraction.
    Orescanin V; Mikelić L; Sofilić T; Rastovcan-Mioc A; Uzarević K; Medunić G; Elez L; Lulić S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):323-9. PubMed ID: 17365298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.
    Vakylabad AB; Schaffie M; Ranjbar M; Manafi Z; Darezereshki E
    J Hazard Mater; 2012 Nov; 241-242():197-206. PubMed ID: 23046698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.
    Buzatu T; Popescu G; Birloaga I; Săceanu S
    Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags.
    Maweja K; Mukongo T; Mbaya RK; Mochubele EA
    J Hazard Mater; 2010 Nov; 183(1-3):294-300. PubMed ID: 20674164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S
    Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):8-14. PubMed ID: 20434263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry.
    Mocellin J; Mercier G; Morel JL; Blais JF; Simonnot MO
    J Environ Manage; 2015 Aug; 158():48-54. PubMed ID: 25958078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
    Erust C; Akcil A
    Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of copper and cobalt from ancient slag.
    Bulut G
    Waste Manag Res; 2006 Apr; 24(2):118-24. PubMed ID: 16634226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic leaching both of zinc and iron from basic oxygen furnace sludge.
    Trung ZH; Kukurugya F; Takacova Z; Orac D; Laubertova M; Miskufova A; Havlik T
    J Hazard Mater; 2011 Sep; 192(3):1100-7. PubMed ID: 21724325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
    Li Y; Perederiy I; Papangelakis VG
    J Hazard Mater; 2008 Apr; 152(2):607-15. PubMed ID: 17728060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching of nickel and copper from soil contaminated by metallurgical dust.
    Barcan V
    Environ Int; 2002 Apr; 28(1-2):63-8. PubMed ID: 12046955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.