These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30193461)

  • 21. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico.
    García GF; Álvarez HB; Echeverría RS; de Alba SR; Rueda VM; Dosantos EC; Cruz GV
    J Air Waste Manag Assoc; 2017 Sep; 67(9):973-985. PubMed ID: 28498787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solving the puzzle of mercury fate and emissions by coal-fired power plants: The potential of hydrodynamic-atmospheric modelling.
    Schneider L; Warren M; Lintern A; Winn P; Myllyvirta L; Beavis S; Gruber B
    Environ Pollut; 2021 Nov; 288():117579. PubMed ID: 34274648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing mercury emissions from coal-fired power plants in India: Possibilities and challenges.
    Joy A; Qureshi A
    Ambio; 2023 Jan; 52(1):242-252. PubMed ID: 35997988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A complete atmospheric emission inventory of F, As, Se, Cd, Sb, Hg, Pb, and U from coal-fired power plants in Anhui Province, eastern China.
    Chen J; Zhang B; Zhang S; Zeng J; Chen P; Liu W; Wang X
    Environ Geochem Health; 2021 May; 43(5):1817-1837. PubMed ID: 33125612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury Pollution from Coal-Fired Power Plants: A Critical Analysis of the Australian Regulatory Response to Public Health Risks.
    Bramwell G; Wilson F; Faunce T
    J Law Med; 2018 Dec; 26(2):480-487. PubMed ID: 30574731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m).
    Denzler B; Bogdal C; Henne S; Obrist D; Steinbacher M; Hungerbühler K
    Environ Sci Technol; 2017 Mar; 51(5):2846-2853. PubMed ID: 28191932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Major sources of mercury emissions to the atmosphere: The U.S. case.
    Thanos Bourtsalas AC; Themelis NJ
    Waste Manag; 2019 Feb; 85():90-94. PubMed ID: 30803618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Air pollutant emissions from coal-fired power plants in China over the past two decades.
    Wang G; Deng J; Zhang Y; Zhang Q; Duan L; Hao J; Jiang J
    Sci Total Environ; 2020 Nov; 741():140326. PubMed ID: 32603941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J; Wang W; Xu W; Wang X; Zhao S
    J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Anthropogenic Mercury Emission Inventories for China from 1980 to 2020: Toward More Accurate Effectiveness Evaluation for the Minamata Convention.
    Zhang Y; Zhang L; Cao S; Liu X; Jin J; Zhao Y
    Environ Sci Technol; 2023 Jun; 57(23):8660-8670. PubMed ID: 37262354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030.
    Tong D; Zhang Q; Liu F; Geng G; Zheng Y; Xue T; Hong C; Wu R; Qin Y; Zhao H; Yan L; He K
    Environ Sci Technol; 2018 Nov; 52(21):12905-12914. PubMed ID: 30249091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.
    Sun R; Sonke JE; Heimbürger LE; Belkin HE; Liu G; Shome D; Cukrowska E; Liousse C; Pokrovsky OS; Streets DG
    Environ Sci Technol; 2014 Jul; 48(13):7660-8. PubMed ID: 24905585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).
    Xu X; Meng B; Zhang C; Feng X; Gu C; Guo J; Bishop K; Xu Z; Zhang S; Qiu G
    Environ Pollut; 2017 Apr; 223():11-18. PubMed ID: 28139322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China.
    Zhang L; Wang S; Wang L; Wu Y; Duan L; Wu Q; Wang F; Yang M; Yang H; Hao J; Liu X
    Environ Sci Technol; 2015 Mar; 49(5):3185-94. PubMed ID: 25655106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possibility of using alternative fuels in Polish power plants in the context of mercury emissions.
    Dziok T; Bury M; Bytnar K; Burmistrz P
    Waste Manag; 2021 May; 126():578-584. PubMed ID: 33864986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Mercury emission characteristics from coal-fired power plants based on actual measurement].
    Wang S; Wang HM; Zhu FH; Chen H; Sun XL; Zuo Y; Liu G
    Huan Jing Ke Xue; 2011 Jan; 32(1):33-7. PubMed ID: 21404661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.