BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30193467)

  • 21. How multisite phosphorylation impacts the conformations of intrinsically disordered proteins.
    Jin F; Gräter F
    PLoS Comput Biol; 2021 May; 17(5):e1008939. PubMed ID: 33945530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Site-Specific Modulation of Charge Controls the Structure and Stimulus Responsiveness of Intrinsically Disordered Peptide Brushes.
    Bhagawati M; Rubashkin MG; Lee JP; Ananthanarayanan B; Weaver VM; Kumar S
    Langmuir; 2016 Jun; 32(23):5990-6. PubMed ID: 27203736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HYPK: A marginally disordered protein sensitive to charge decoration.
    Firouzbakht A; Haider A; Gaalswyk K; Alaeen S; Ghosh K; Gruebele M
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2316408121. PubMed ID: 38657047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study.
    Hyltegren K; Skepö M
    J Colloid Interface Sci; 2017 May; 494():266-273. PubMed ID: 28160710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: A Force Field Comparison.
    Rieloff E; Skepö M
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Side chain electrostatic interactions and pH-dependent expansion of the intrinsically disordered, highly acidic carboxyl-terminus of γ-tubulin.
    Payliss BJ; Vogel J; Mittermaier AK
    Protein Sci; 2019 Jun; 28(6):1095-1105. PubMed ID: 30968464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
    Zheng W; Dignon G; Brown M; Kim YC; Mittal J
    J Phys Chem Lett; 2020 May; 11(9):3408-3415. PubMed ID: 32227994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature--models for protein folding and halophilic proteins.
    Ramalingam K; Aimoto S; Bello J
    Biopolymers; 1992 Aug; 32(8):981-92. PubMed ID: 1420981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins.
    Wohl S; Jakubowski M; Zheng W
    J Phys Chem Lett; 2021 Jul; 12(28):6684-6691. PubMed ID: 34259536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic α helix propensities compact hydrodynamic radii in intrinsically disordered proteins.
    English LR; Tilton EC; Ricard BJ; Whitten ST
    Proteins; 2017 Feb; 85(2):296-311. PubMed ID: 27936491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
    Truzzolillo D; Bordi F; Sciortino F; Sennato S
    J Chem Phys; 2010 Jul; 133(2):024901. PubMed ID: 20632770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated.
    Lin YH; Chan HS
    Biophys J; 2017 May; 112(10):2043-2046. PubMed ID: 28483149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural Regulation of a Neurofilament-Inspired Intrinsically Disordered Protein Brush by Multisite Phosphorylation.
    Lei R; Lee JP; Francis MB; Kumar S
    Biochemistry; 2018 Jul; 57(27):4019-4028. PubMed ID: 29557644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical basis of the disorder-order transition.
    Soranno A
    Arch Biochem Biophys; 2020 May; 685():108305. PubMed ID: 32145247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of histidine for charge regulation of unstructured peptides at interfaces and in bulk.
    Kurut A; Henriques J; Forsman J; Skepö M; Lund M
    Proteins; 2014 Apr; 82(4):657-67. PubMed ID: 24123297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers.
    Ruff KM; Roberts S; Chilkoti A; Pappu RV
    J Mol Biol; 2018 Nov; 430(23):4619-4635. PubMed ID: 29949750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational transition of κ-casein in micellar environment: Insight from the tryptophan fluorescence.
    Mishra S; Meher G; Chakraborty H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Nov; 186():99-104. PubMed ID: 28622544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Intricate Balance of Intermolecular Interactions upon Self-Association of Intrinsically Disordered Proteins.
    Rieloff E; Tully MD; Skepö M
    J Mol Biol; 2019 Feb; 431(3):511-523. PubMed ID: 30529747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
    Das S; Eisen A; Lin YH; Chan HS
    J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.