These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30193475)

  • 1. The electric double layer at metal-water interfaces revisited based on a charge polarization scheme.
    Sakong S; Groß A
    J Chem Phys; 2018 Aug; 149(8):084705. PubMed ID: 30193475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles.
    Sakong S; Forster-Tonigold K; Groß A
    J Chem Phys; 2016 May; 144(19):194701. PubMed ID: 27208959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution.
    Bonagiri LKS; Panse KS; Zhou S; Wu H; Aluru NR; Zhang Y
    ACS Nano; 2022 Nov; 16(11):19594-19604. PubMed ID: 36351178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Simulation of Electrode-Solution Interfaces.
    Scalfi L; Salanne M; Rotenberg B
    Annu Rev Phys Chem; 2021 Apr; 72():189-212. PubMed ID: 33395545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Ab Initio Molecular Dynamics and a Semiclassical Grand Canonical Scheme for the Electric Double Layer of the Pt(111)/Water Interface.
    Huang J; Zhang Y; Li M; Groß A; Sakong S
    J Phys Chem Lett; 2023 Mar; 14(9):2354-2363. PubMed ID: 36848227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the electrochemical double layer and its impact on intercalation reactions.
    Lück J; Latz A
    Phys Chem Chem Phys; 2018 Nov; 20(44):27804-27821. PubMed ID: 30379165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of electrochemical double layers in thermodynamic non-equilibrium.
    Dreyer W; Guhlke C; Müller R
    Phys Chem Chem Phys; 2015 Oct; 17(40):27176-94. PubMed ID: 26415592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating Electrochemical Systems by Combining the Finite Field Method with a Constant Potential Electrode.
    Dufils T; Jeanmairet G; Rotenberg B; Sprik M; Salanne M
    Phys Rev Lett; 2019 Nov; 123(19):195501. PubMed ID: 31765198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.
    Bouzid A; Pasquarello A
    J Phys Chem Lett; 2018 Apr; 9(8):1880-1884. PubMed ID: 29589437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essays on Conceptual Electrochemistry: I. Bridging Open-Circuit Voltage of Electrochemical Cells and Charge Distribution at Electrode-Electrolyte Interfaces.
    Huang J; Zhang Y
    Front Chem; 2022; 10():938064. PubMed ID: 35958239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of molecular modelling of electric double layer capacitors.
    Burt R; Birkett G; Zhao XS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6519-38. PubMed ID: 24589998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces.
    Braunwarth L; Jung C; Jacob T
    Chemphyschem; 2023 Jan; 24(1):e202200336. PubMed ID: 36123306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiscale model for charge inversion in electric double layers.
    Mashayak SY; Aluru NR
    J Chem Phys; 2018 Jun; 148(21):214102. PubMed ID: 29884053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer.
    Bohinc K; Bossa GV; May S
    Adv Colloid Interface Sci; 2017 Nov; 249():220-233. PubMed ID: 28571611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability.
    Vatamanu J; Borodin O
    J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Langevin-Poisson-EQT: A dipolar solvent based quasi-continuum approach for electric double layers.
    Mashayak SY; Aluru NR
    J Chem Phys; 2017 Jan; 146(4):044108. PubMed ID: 28147543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of applied voltage on water at a gold electrode interface from
    Goldsmith ZK; Calegari Andrade MF; Selloni A
    Chem Sci; 2021 Mar; 12(16):5865-5873. PubMed ID: 34168811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic EDL structures and charge-potential relation on stepped platinum surface: Insights from the ab initio molecular dynamics simulations.
    Li P; Liu Y; Chen S
    J Chem Phys; 2022 Mar; 156(10):104701. PubMed ID: 35291796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.