These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 3019412)

  • 41. A comparative study of cholesterogenic activities from acetate of neonatal chick liver, kidney and intestinal mucosa.
    Arce V; Aguilera JA; Linares A; García-Peregrín E
    Comp Biochem Physiol B; 1982; 71(4):743-6. PubMed ID: 7083824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mevalonate metabolism: role of kidneys.
    Edmond J; Fogelman AM; Popják G
    Science; 1976 Jul; 193(4248):154-6. PubMed ID: 935865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosynthesis of squalene and sterols by rat aorta.
    Daly MM
    J Lipid Res; 1971 May; 12(3):367-75. PubMed ID: 5579265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for an underestimation of the shunt pathway of mevalonate metabolism in slices of livers and kidneys from fasted rats and rats in diabetic ketosis.
    Brady PS; Schumann WC; Ohgaku S; Scofield RF; Landau BR
    J Lipid Res; 1982 Dec; 23(9):1317-20. PubMed ID: 6819335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Posttranscriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in lens epithelial cells by mevalonate-derived nonsterols.
    Cenedella RJ
    Exp Eye Res; 1997 Jul; 65(1):63-72. PubMed ID: 9237866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase function in alpha-toxin-perforated cells.
    Giron MD; Havel CM; Watson JA
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6398-402. PubMed ID: 8022795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol synthesis and esterification during the first cell cycle of liver regeneration.
    Trentalance A; Leoni S; Mangiantini MT; Spagnuolo S; Feingold K; Hughes-Fulford M; Siperstein M; Cooper AD; Erickson SK
    Biochim Biophys Acta; 1984 Jun; 794(1):142-51. PubMed ID: 6733123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies of the in vivo metabolism of mevalonic acid in the normal rat.
    Hellstrom KH; Siperstein MD; Bricker LA; Luby LJ
    J Clin Invest; 1973 Jun; 52(6):1303-13. PubMed ID: 4703220
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevalonate.
    Straka MS; Panini SR
    Arch Biochem Biophys; 1995 Feb; 317(1):235-43. PubMed ID: 7872789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impaired renal mevalonate metabolism in nephrotic syndrome: a stimulus for increased hepatic cholesterogenesis independent of GFR and hypoalbuminemia.
    Golper TA; Swartz SH
    Metabolism; 1982 May; 31(5):471-6. PubMed ID: 7078427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chloroquine inhibits cyclization of squalene oxide to lanosterol in mammalian cells.
    Chen HW; Leonard DA
    J Biol Chem; 1984 Jul; 259(13):8156-62. PubMed ID: 6429139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cholesterol synthesis and esterification in isolated enterocytes: regulation by cholesterol and cholestyramine feeding.
    Iglesias J; Gonzalez-Pacanowska D; Marco C; Garcia-Peregrin E
    Lipids; 1993 Jun; 28(6):549-53. PubMed ID: 8355580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microarray and biochemical analysis of lovastatin-induced apoptosis of squamous cell carcinomas.
    Dimitroulakos J; Marhin WH; Tokunaga J; Irish J; Gullane P; Penn LZ; Kamel-Reid S
    Neoplasia; 2002; 4(4):337-46. PubMed ID: 12082550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways.
    Hinson DD; Chambliss KL; Toth MJ; Tanaka RD; Gibson KM
    J Lipid Res; 1997 Nov; 38(11):2216-23. PubMed ID: 9392419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of the shunt pathway of mevalonate metabolism to the regulation of cholesterol synthesis in rat liver.
    Marinier E; Lincoln BC; Garneau M; David F; Brunengraber H
    J Biol Chem; 1987 Dec; 262(35):16936-40. PubMed ID: 3680279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bifunctional inhibitors of mevalonate kinase and mevalonate 5-diphosphate decarboxylase.
    Qiu Y; Li D
    Org Lett; 2006 Mar; 8(6):1013-6. PubMed ID: 16524256
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Compartmentalization of cholesterol biosynthesis. Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes.
    Biardi L; Krisans SK
    J Biol Chem; 1996 Jan; 271(3):1784-8. PubMed ID: 8576183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relationship between changes in free cholesterol and pyrophosphomevalonate decarboxylase activity during myelination.
    Marco C; Gonzalez-Pacanowska D; Linares A; Garcia-Peregrin E
    Neurochem Res; 1983 Jun; 8(6):711-21. PubMed ID: 6621770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different developmental patterns of 3-hydroxy-3-methylglutaryl-CoA reductase in chick tissues according to their role in cholesterogenesis.
    Alejandre MJ; Ramirez H; Suarez MD; Garcia-Peregrin E
    Biol Neonate; 1981; 40(5-6):232-6. PubMed ID: 7317544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of sterol biosynthesis inhibitor, SSF-109, on cholesterol synthesis in isolated rat hepatocytes.
    Seo S; Tonda K; Uomori A; Takeda K; Hirata M
    Steroids; 1993 Feb; 58(2):74-8. PubMed ID: 8484187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.