These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30194200)

  • 1. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases.
    Du P; Liu X; Xiang R; Lv K; Chen H; Liu W; Cao A; Chen L; Wang X; Yu T; Ding J; Li W; Li J; Li Y; Yu Z; Zhu L; Liu J; Geng D
    Eur Radiol; 2023 Dec; 33(12):8925-8935. PubMed ID: 37505244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data.
    Cho SJ; Cho W; Choi D; Sim G; Jeong SY; Baik SH; Bae YJ; Choi BS; Kim JH; Yoo S; Han JH; Kim CY; Choo J; Sunwoo L
    Sci Rep; 2024 May; 14(1):11085. PubMed ID: 38750084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI Evaluation of Imaging Factors in the Evolution of Stage-Treated Metastases Using Gamma Knife.
    Buzea CG; Buga R; Paun MA; Albu M; Iancu DT; Dobrovat B; Agop M; Paun VP; Eva L
    Diagnostics (Basel); 2023 Sep; 13(17):. PubMed ID: 37685391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps.
    Wang H; Xue J; Qu T; Bernstein K; Chen T; Barbee D; Silverman JS; Kondziolka D
    Med Phys; 2021 Sep; 48(9):5522-5530. PubMed ID: 34287940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
    Basree MM; Li C; Um H; Bui AH; Liu M; Ahmed A; Tiwari P; McMillan AB; Baschnagel AM
    J Neurooncol; 2024 Jun; 168(2):307-316. PubMed ID: 38689115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable AI-assisted clinical decision making (CDM) for dose prescription in radiosurgery of brain metastases.
    Cao Y; Kunaprayoon D; Ren L
    Radiother Oncol; 2023 Oct; 187():109842. PubMed ID: 37543055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
    Hosny A; Parmar C; Coroller TP; Grossmann P; Zeleznik R; Kumar A; Bussink J; Gillies RJ; Mak RH; Aerts HJWL
    PLoS Med; 2018 Nov; 15(11):e1002711. PubMed ID: 30500819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images.
    Zhang Z; Yang J; Ho A; Jiang W; Logan J; Wang X; Brown PD; McGovern SL; Guha-Thakurta N; Ferguson SD; Fave X; Zhang L; Mackin D; Court LE; Li J
    Eur Radiol; 2018 Jun; 28(6):2255-2263. PubMed ID: 29178031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
    Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
    PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative location prediction in CT scan images using convolutional neural networks.
    Guo J; Du H; Zhu J; Yan T; Qiu B
    Comput Methods Programs Biomed; 2018 Jul; 160():43-49. PubMed ID: 29728245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery.
    Mouraviev A; Detsky J; Sahgal A; Ruschin M; Lee YK; Karam I; Heyn C; Stanisz GJ; Martel AL
    Neuro Oncol; 2020 Jun; 22(6):797-805. PubMed ID: 31956919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dose-Volume Response Model for Brain Metastases Treated With Frameless Single-Fraction Robotic Radiosurgery: Seeking to Better Predict Response to Treatment.
    Amsbaugh MJ; Yusuf MB; Gaskins J; Dragun AE; Dunlap N; Guan T; Woo S
    Technol Cancer Res Treat; 2017 Jun; 16(3):344-351. PubMed ID: 28027696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms.
    Zindler JD; Jochems A; Lagerwaard FJ; Beumer R; Troost EGC; Eekers DBP; Compter I; van der Toorn PP; Essers M; Oei B; Hurkmans CW; Bruynzeel AME; Bosmans G; Swinnen A; Leijenaar RTH; Lambin P
    Radiother Oncol; 2017 May; 123(2):189-194. PubMed ID: 28237400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.
    Yasaka K; Akai H; Abe O; Kiryu S
    Radiology; 2018 Mar; 286(3):887-896. PubMed ID: 29059036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
    Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB
    Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.