These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30194249)

  • 21. Hydrodynamic model of fish orientation in a channel flow.
    Porfiri M; Zhang P; Peterson SD
    Elife; 2022 Jun; 11():. PubMed ID: 35666104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics.
    Herzog H; Klein B; Ziegler A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28468922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constriction canal assisted artificial lateral line system for enhanced hydrodynamic pressure sensing.
    Ma Z; Jiang Y; Wu P; Xu Y; Hu X; Gong Z; Zhang D
    Bioinspir Biomim; 2019 Sep; 14(6):066004. PubMed ID: 31434068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.
    Asadnia M; Kottapalli AG; Miao J; Warkiani ME; Triantafyllou MS
    J R Soc Interface; 2015 Oct; 12(111):20150322. PubMed ID: 26423435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
    Ristroph L; Liao JC; Zhang J
    Phys Rev Lett; 2015 Jan; 114(1):018102. PubMed ID: 25615505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object localization through the lateral line system of fish: theory and experiment.
    Goulet J; Engelmann J; Chagnaud BP; Franosch JM; Suttner MD; van Hemmen JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):1-17. PubMed ID: 18060550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pressure difference sensor inspired by fish canal lateral line.
    Sharif MA; Tan X
    Bioinspir Biomim; 2019 Jul; 14(5):055003. PubMed ID: 31282390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
    Winkelnkemper J; Kranz S; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):155-166. PubMed ID: 29075852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior, Electrophysiology, and Robotics Experiments to Study Lateral Line Sensing in Fishes.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    Integr Comp Biol; 2018 Nov; 58(5):874-883. PubMed ID: 29982706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the lateral line in active drag reduction by clupeoid fishes.
    Lighthill J
    Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals.
    Klein A; Bleckmann H
    Beilstein J Nanotechnol; 2011; 2():276-83. PubMed ID: 21977440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of artificial water flows by the lateral line system of a benthic feeding cichlid fish.
    Schwalbe MA; Sevey BJ; Webb JF
    J Exp Biol; 2016 Apr; 219(Pt 7):1050-9. PubMed ID: 27030780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3832-42. PubMed ID: 21037062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensing the flow beneath the fins.
    Bora M; Kottapalli AGP; Miao J; Triantafyllou MS
    Bioinspir Biomim; 2018 Jan; 13(2):025002. PubMed ID: 29239859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral line canal morphology and noise reduction.
    Klein AT; Bleckmann H
    Adv Exp Med Biol; 2012; 730():121-3. PubMed ID: 22278464
    [No Abstract]   [Full Text] [Related]  

  • 38. Mechanosensory system of the lateral line in the subantarctic Patagonian blenny Eleginops maclovinus.
    Sáez S; Pequeño G; Jaramillo R; Vargas-Chacoff L
    J Fish Biol; 2019 Jul; 95(1):222-227. PubMed ID: 30141196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphological structure and peripheral innervation of the lateral line system in the Siberian sturgeon (Acipenser baerii).
    Song W; Song J
    Integr Zool; 2012 Mar; 7(1):83-93. PubMed ID: 22405451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3037-43. PubMed ID: 19749095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.