BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30194401)

  • 21. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin.
    Dreier MA; Althoff P; Norahan MJ; Tennigkeit SA; El-Mashtoly SF; Lübben M; Kötting C; Rudack T; Gerwert K
    Commun Biol; 2021 May; 4(1):578. PubMed ID: 33990694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of channelrhodopsin into a light-gated chloride channel.
    Wietek J; Wiegert JS; Adeishvili N; Schneider F; Watanabe H; Tsunoda SP; Vogt A; Elstner M; Oertner TG; Hegemann P
    Science; 2014 Apr; 344(6182):409-12. PubMed ID: 24674867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Dynamics Simulation of Transmembrane Transport of Chloride Ions in Mutants of Channelrhodopsin.
    Zhang W; Yang T; Zhou S; Cheng J; Yuan S; Lo GV; Dou Y
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31835536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel photocycle kinetic model of anion channelrhodopsin GtACR1 function.
    Szundi I; Kliger DS
    Biophys J; 2024 Jun; 123(12):1735-1750. PubMed ID: 38762755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance.
    Sineshchekov OA; Govorunova EG; Li H; Spudich JL
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9512-E9519. PubMed ID: 29078348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opposite Charge Movements Within the Photoactive Site Modulate Two-Step Channel Closing in GtACR1.
    Sineshchekov OA; Govorunova EG; Li H; Wang X; Spudich JL
    Biophys J; 2019 Nov; 117(10):2034-2040. PubMed ID: 31676131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.
    Berndt A; Lee SY; Wietek J; Ramakrishnan C; Steinberg EE; Rashid AJ; Kim H; Park S; Santoro A; Frankland PW; Iyer SM; Pak S; Ährlund-Richter S; Delp SL; Malenka RC; Josselyn SA; Carlén M; Hegemann P; Deisseroth K
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):822-9. PubMed ID: 26699459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Channel Gating in Kalium Channelrhodopsin Slow Mutants.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Spudich JL
    J Mol Biol; 2024 Mar; 436(5):168298. PubMed ID: 37802216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the Channelrhodopsin Genes in the Green and Cryptophytic Algae from the White and Black Seas.
    Karpova OV; Vinogradova EN; Lobakova ES
    Biochemistry (Mosc); 2022 Oct; 87(10):1187-1198. PubMed ID: 36273887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis.
    Kojima K; Kawanishi S; Nishimura Y; Hasegawa M; Nakao S; Nagata Y; Yoshizawa S; Sudo Y
    Sci Rep; 2023 Apr; 13(1):6974. PubMed ID: 37117398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The open channel state in anion channelrhodopsin GtACR1 is a red-absorbing intermediate.
    Szundi I; Kliger DS
    Biophys J; 2024 Apr; 123(8):940-946. PubMed ID: 38462839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin.
    Cheng C; Kamiya M; Takemoto M; Ishitani R; Nureki O; Yoshida N; Hayashi S
    Biophys J; 2018 Oct; 115(7):1281-1291. PubMed ID: 30236783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel.
    Berndt A; Lee SY; Ramakrishnan C; Deisseroth K
    Science; 2014 Apr; 344(6182):420-4. PubMed ID: 24763591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2.
    Shibata K; Oda K; Nishizawa T; Hazama Y; Ono R; Takaramoto S; Bagherzadeh R; Yawo H; Nureki O; Inoue K; Akiyama H
    J Am Chem Soc; 2023 May; 145(19):10779-10789. PubMed ID: 37129501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge Transport by Light-Activated Rhodopsins Determined by Electrophysiological Recordings.
    Hussein T; Bamann C
    Methods Mol Biol; 2021; 2191():67-84. PubMed ID: 32865739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green-Sensitive, Long-Lived, Step-Functional Anion Channelrhodopsin-2 Variant as a High-Potential Neural Silencing Tool.
    Kojima K; Miyoshi N; Shibukawa A; Chowdhury S; Tsujimura M; Noji T; Ishikita H; Yamanaka A; Sudo Y
    J Phys Chem Lett; 2020 Aug; 11(15):6214-6218. PubMed ID: 32697087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kalium channelrhodopsins effectively inhibit neurons.
    Ott S; Xu S; Lee N; Hong I; Anns J; Suresh DD; Zhang Z; Zhang X; Harion R; Ye W; Chandramouli V; Jesuthasan S; Saheki Y; Claridge-Chang A
    Nat Commun; 2024 Apr; 15(1):3480. PubMed ID: 38658537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson.
    Urmann D; Lorenz C; Linker SM; Braun M; Wachtveitl J; Bamann C
    Photochem Photobiol; 2017 May; 93(3):782-795. PubMed ID: 28500713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens.
    Tashiro R; Sushmita K; Hososhima S; Sharma S; Kateriya S; Kandori H; Tsunoda SP
    Commun Biol; 2021 Feb; 4(1):235. PubMed ID: 33623126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.