These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30194427)
1. Development of a quantitative evaluation system for visuo-motor control in three-dimensional virtual reality space. Choi W; Lee J; Yanagihara N; Li L; Kim J Sci Rep; 2018 Sep; 8(1):13439. PubMed ID: 30194427 [TBL] [Abstract][Full Text] [Related]
2. The effect of different depth planes during a manual tracking task in three-dimensional virtual reality space. Kim H; Koike Y; Choi W; Lee J Sci Rep; 2023 Dec; 13(1):21499. PubMed ID: 38057361 [TBL] [Abstract][Full Text] [Related]
3. Characteristic of Motor Control in Three-Dimensional Circular Tracking Movements during Monocular Vision. Choi W; Li L; Lee J Biomed Res Int; 2019; 2019():3867138. PubMed ID: 31815133 [TBL] [Abstract][Full Text] [Related]
4. Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information. Lee G; Choi W; Jo H; Park W; Kim J PLoS One; 2020; 15(11):e0241138. PubMed ID: 33175910 [TBL] [Abstract][Full Text] [Related]
5. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment. Lefrançois C; Messier J Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472 [TBL] [Abstract][Full Text] [Related]
6. The influence of age in women in visuo-spatial memory in reaching and navigation tasks with and without landmarks. Perrochon A; Mandigout S; Petruzzellis S; Soria Garcia N; Zaoui M; Berthoz A; Daviet JC Neurosci Lett; 2018 Sep; 684():13-17. PubMed ID: 29966753 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Control Characteristics between Dominant and Non-Dominant Hands by Transient Responses of Circular Tracking Movements in 3D Virtual Reality Space. Park W; Choi W; Jo H; Lee G; Kim J Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575627 [TBL] [Abstract][Full Text] [Related]
8. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller. Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361 [TBL] [Abstract][Full Text] [Related]
9. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment. Limanowski J; Kirilina E; Blankenburg F Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254 [TBL] [Abstract][Full Text] [Related]
10. Awareness of Visual Offset Reduces but Does Not Eliminate Joint Repositioning Errors in Virtual Reality. Sakurai M; Spitzley KA; Karduna AR J Mot Behav; 2024; 56(5):592-599. PubMed ID: 39014967 [TBL] [Abstract][Full Text] [Related]
11. When two eyes are better than one in prehension: monocular viewing and end-point variance. Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152 [TBL] [Abstract][Full Text] [Related]
12. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study. Moro SB; Carrieri M; Avola D; Brigadoi S; Lancia S; Petracca A; Spezialetti M; Ferrari M; Placidi G; Quaresima V J Neural Eng; 2016 Jun; 13(3):036002. PubMed ID: 27001948 [TBL] [Abstract][Full Text] [Related]
13. A Virtual Reality Soldier Simulator with Body Area Networks for Team Training. Fan YC; Wen CY Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678276 [TBL] [Abstract][Full Text] [Related]
14. Evidence of a limited visuo-motor memory used in programming wrist movements. Miall RC; Haggard PN; Cole JD Exp Brain Res; 1995; 107(2):267-80. PubMed ID: 8773245 [TBL] [Abstract][Full Text] [Related]
15. Contribution of reference frames for movement planning in peripersonal space representation. Ghafouri M; Lestienne FG Exp Brain Res; 2006 Feb; 169(1):24-36. PubMed ID: 16261340 [TBL] [Abstract][Full Text] [Related]
16. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing. Grant S Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046 [TBL] [Abstract][Full Text] [Related]
17. Designing and Analyzing In-Place Motor Tasks in Virtual Reality With Goal Functions. Carrera RM; Tao C; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2928-2938. PubMed ID: 39106130 [TBL] [Abstract][Full Text] [Related]
18. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884 [TBL] [Abstract][Full Text] [Related]