BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30194436)

  • 1. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species.
    Kozłowska E; Urbaniak M; Hoc N; Grzeszczuk J; Dymarska M; Stępień Ł; Pląskowska E; Kostrzewa-Susłow E; Janeczko T
    Sci Rep; 2018 Sep; 8(1):13449. PubMed ID: 30194436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures.
    Kozłowska E; Matera A; Sycz J; Kancelista A; Kostrzewa-Susłow E; Janeczko T
    Microb Cell Fact; 2020 Feb; 19(1):37. PubMed ID: 32066453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Formation of hydroxylated steroid lactones from Dehydroepiandrosterone by Spicaria fumoso-rosea F-881].
    Lobastova TG; Khomutov SM; Donova MV
    Prikl Biokhim Mikrobiol; 2015; 51(2):174-82. PubMed ID: 26027352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.
    Świzdor A; Panek A; Milecka-Tronina N
    Steroids; 2014 Apr; 82():44-52. PubMed ID: 24486796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isaria fumosorosea KCh J2 Entomopathogenic Strain as an Effective Biocatalyst for Steroid Compound Transformations.
    Kozłowska E; Dymarska M; Kostrzewa-Susłow E; Janeczko T
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28891949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling.
    Huang LH; Li J; Xu G; Zhang XH; Wang YG; Yin YL; Liu HM
    Steroids; 2010 Dec; 75(13-14):1039-46. PubMed ID: 20600202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Baeyer-Villiger oxidation of steroidal ketones using Beauveria bassiana: Presence of an 11α-hydroxyl group essential to generation of D-homo lactones.
    Swizdor A; Kołek T; Panek A; Białońska A
    Biochim Biophys Acta; 2011 Apr; 1811(4):253-62. PubMed ID: 21277994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa.
    Kozłowska E; Hoc N; Sycz J; Urbaniak M; Dymarska M; Grzeszczuk J; Kostrzewa-Susłow E; Stępień Ł; Pląskowska E; Janeczko T
    Microb Cell Fact; 2018 May; 17(1):71. PubMed ID: 29753319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiological synthesis of stereoisomeric 7(α/β)-hydroxytestololactones and 7(α/β)-hydroxytestolactones.
    Lobastova TG; Khomutov SM; Shutov AA; Donova MV
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4967-4976. PubMed ID: 31028438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydroxylation of 7-oxo-DHEA, a natural metabolite of DHEA, resulting in formation of new metabolites of potential pharmaceutical interest.
    Świzdor A; Panek A; Milecka-Tronina N
    Chem Biol Drug Des; 2016 Dec; 88(6):844-849. PubMed ID: 27369457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana.
    Xiong Z; Wei Q; Chen H; Chen S; Xu W; Qiu G; Liang S; Hu X
    Steroids; 2006 Nov; 71(11-12):979-83. PubMed ID: 16973198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylation of pregnenolone and dehydroepiandrosterone by zygomycete Backusella lamprospora VKM F-944: selective production of 7α-OH-DHEA.
    Kollerov V; Shutov A; Kazantsev A; Donova M
    Appl Microbiol Biotechnol; 2022 Jan; 106(2):535-548. PubMed ID: 34939135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Baeyer-Villiger oxidation of DHEA, pregnenolone, and androstenedione by Penicillium lilacinum AM111.
    Kołek T; Szpineter A; Swizdor A
    Steroids; 2008 Dec; 73(14):1441-5. PubMed ID: 18755205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydroepiandrosterone 7alpha- and 7beta-hydroxylation in mouse brain microsomes. Effects of cytochrome P450 inhibitors and structure-specific inhibition by steroid hormones.
    Doostzadeh J; Cotillon AC; Morfin R
    J Neuroendocrinol; 1997 Dec; 9(12):923-8. PubMed ID: 9468017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of Δ
    Panek A; Wójcik P; Świzdor A; Szaleniec M; Janeczko T
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of androst-4-ene-3,17-dione and nandrolone decanoate by genera of Aspergillus and Fusarium.
    Heidary M; Ghasemi S; Habibi Z; Ansari F
    Biotechnol Lett; 2020 Sep; 42(9):1767-1775. PubMed ID: 32358727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on Baeyer-Villiger oxidation of steroids: DHEA and pregnenolone D-lactonization pathways in Penicillium camemberti AM83.
    Kołek T; Szpineter A; Swizdor A
    Steroids; 2009 Oct; 74(10-11):859-62. PubMed ID: 19481558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baeyer-Villiger oxidation of some C(19) steroids by Penicillium lanosocoeruleum.
    Świzdor A
    Molecules; 2013 Nov; 18(11):13812-22. PubMed ID: 24213656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of parthenin by Beauveria bassiana ATCC 7159.
    Abdel Halim OB; Maatooq GT; Marzouk AM
    Pharmazie; 2007 Mar; 62(3):226-30. PubMed ID: 17416201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human liver S9 fractions: metabolism of dehydroepiandrosterone, epiandrosterone, and related 7-hydroxylated derivatives.
    Chalbot S; Morfin R
    Drug Metab Dispos; 2005 Apr; 33(4):563-9. PubMed ID: 15650074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.