These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30194614)

  • 1. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics.
    Niketeghad S; Pouratian N
    Neurotherapeutics; 2019 Jan; 16(1):134-143. PubMed ID: 30194614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
    Lewis PM; Ackland HM; Lowery AJ; Rosenfeld JV
    Brain Res; 2015 Jan; 1595():51-73. PubMed ID: 25446438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in implantable bionic devices for blindness: a review.
    Lewis PM; Ayton LN; Guymer RH; Lowery AJ; Blamey PJ; Allen PJ; Luu CD; Rosenfeld JV
    ANZ J Surg; 2016 Sep; 86(9):654-9. PubMed ID: 27301783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attaining higher resolution visual prosthetics: a review of the factors and limitations.
    Eiber CD; Lovell NH; Suaning GJ
    J Neural Eng; 2013 Feb; 10(1):011002. PubMed ID: 23337266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contemporary approaches to visual prostheses.
    Mirochnik RM; Pezaris JS
    Mil Med Res; 2019 Jun; 6(1):19. PubMed ID: 31167653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.
    Lewis PM; Rosenfeld JV
    Brain Res; 2016 Jan; 1630():208-24. PubMed ID: 26348986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurolight: A Deep Learning Neural Interface for Cortical Visual Prostheses.
    Lozano A; Suárez JS; Soto-Sánchez C; Garrigós J; Martínez-Alvarez JJ; Ferrández JM; Fernández E
    Int J Neural Syst; 2020 Sep; 30(9):2050045. PubMed ID: 32689842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for restoring vision to the blind: current and emerging technologies.
    Theogarajan L
    Neurosci Lett; 2012 Jun; 519(2):129-33. PubMed ID: 22414860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward more versatile and intuitive cortical brain-machine interfaces.
    Andersen RA; Kellis S; Klaes C; Aflalo T
    Curr Biol; 2014 Sep; 24(18):R885-R897. PubMed ID: 25247368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
    Beauchamp MS; Oswalt D; Sun P; Foster BL; Magnotti JF; Niketeghad S; Pouratian N; Bosking WH; Yoshor D
    Cell; 2020 May; 181(4):774-783.e5. PubMed ID: 32413298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Getting signals into the brain: visual prosthetics through thalamic microstimulation.
    Pezaris JS; Eskandar EN
    Neurosurg Focus; 2009 Jul; 27(1):E6. PubMed ID: 19569894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic approaches to restoration of sight.
    Goetz GA; Palanker DV
    Rep Prog Phys; 2016 Sep; 79(9):096701. PubMed ID: 27502748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Neuroscience, Not Devices, Will Determine the Effectiveness of Visual Prostheses.
    Abbasi B; Rizzo JF
    Semin Ophthalmol; 2021 May; 36(4):168-175. PubMed ID: 33734937
    [No Abstract]   [Full Text] [Related]  

  • 17. Preface: The Eye and The Chip world research congress on visual neuro-prosthetics.
    Hessburg PC; Rizzo J; O'Malley ER
    J Neural Eng; 2016 Apr; 13(2):020401. PubMed ID: 26904980
    [No Abstract]   [Full Text] [Related]  

  • 18. A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation.
    Tian F; Zhang Y; Schriver KE; Hu JM; Roe AW
    Nat Commun; 2024 Aug; 15(1):6528. PubMed ID: 39095351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaches to a cortical vision prosthesis: implications of electrode size and placement.
    Christie BP; Ashmont KR; House PA; Greger B
    J Neural Eng; 2016 Apr; 13(2):025003. PubMed ID: 26905379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical responses to prosthetic retinal stimulation are significantly affected by the light-adaptive state of the surrounding normal retina.
    Arens-Arad T; Lender R; Farah N; Mandel Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33470983
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.