BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30194685)

  • 1. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization.
    Mackie J; Kumar H; Bearne SL
    FEBS Lett; 2018 Oct; 592(20):3399-3413. PubMed ID: 30194685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum.
    Potrykus J; Flemming J; Bearne SL
    Arch Biochem Biophys; 2009 Nov; 491(1-2):16-24. PubMed ID: 19772853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis.
    Miyamoto T; Katane M; Saitoh Y; Sekine M; Homma H
    Amino Acids; 2017 Nov; 49(11):1885-1894. PubMed ID: 28894939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glutamate racemase by substrate-product analogues.
    Pal M; Bearne SL
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1432-6. PubMed ID: 24507924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and molecular mechanism of an aspartate/glutamate racemase from Escherichia coli O157.
    Liu X; Gao F; Ma Y; Liu S; Cui Y; Yuan Z; Kang X
    FEBS Lett; 2016 Apr; 590(8):1262-9. PubMed ID: 27001440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery.
    Ruzheinikov SN; Taal MA; Sedelnikova SE; Baker PJ; Rice DW
    Structure; 2005 Nov; 13(11):1707-13. PubMed ID: 16271894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional comparison of the two Bacillus anthracis glutamate racemases.
    Dodd D; Reese JG; Louer CR; Ballard JD; Spies MA; Blanke SR
    J Bacteriol; 2007 Jul; 189(14):5265-75. PubMed ID: 17496086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of catalytic power and ligand binding in glutamate racemase.
    Spies MA; Reese JG; Dodd D; Pankow KL; Blanke SR; Baudry J
    J Am Chem Soc; 2009 Apr; 131(14):5274-84. PubMed ID: 19309142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How the substrate D-glutamate drives the catalytic action of Bacillus subtilis glutamate racemase.
    Puig E; Mixcoha E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Am Chem Soc; 2009 Mar; 131(10):3509-21. PubMed ID: 19227983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional analysis of two glutamate racemase isozymes from Bacillus anthracis and implications for inhibitor design.
    May M; Mehboob S; Mulhearn DC; Wang Z; Yu H; Thatcher GR; Santarsiero BD; Johnson ME; Mesecar AD
    J Mol Biol; 2007 Aug; 371(5):1219-37. PubMed ID: 17610893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for an atypical active site of an L-aspartate/glutamate-specific racemase from Escherichia coli.
    Ahn JW; Chang JH; Kim KJ
    FEBS Lett; 2015 Dec; 589(24 Pt B):3842-7. PubMed ID: 26555188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for catalytic racemization and substrate specificity of an N-acylamino acid racemase homologue from Deinococcus radiodurans.
    Wang WC; Chiu WC; Hsu SK; Wu CL; Chen CY; Liu JS; Hsu WH
    J Mol Biol; 2004 Sep; 342(1):155-69. PubMed ID: 15313614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.
    Zheng RC; Tang XL; Suo H; Feng LL; Liu X; Yang J; Zheng YG
    Enzyme Microb Technol; 2018 May; 112():88-93. PubMed ID: 29499786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate.
    Ashiuchi M; Tani K; Soda K; Misono H
    J Biochem; 1998 Jun; 123(6):1156-63. PubMed ID: 9604005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into stereochemical inversion by diaminopimelate epimerase: an antibacterial drug target.
    Pillai B; Cherney MM; Diaper CM; Sutherland A; Blanchard JS; Vederas JC; James MN
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8668-73. PubMed ID: 16723397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and alpha-amino-epsilon-caprolactam racemase.
    Asano Y; Yamaguchi S
    J Am Chem Soc; 2005 Jun; 127(21):7696-7. PubMed ID: 15913357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine racemase from a lactic acid bacterium, Oenococcus oeni: structural basis of substrate specificity.
    Kato S; Hemmi H; Yoshimura T
    J Biochem; 2012 Dec; 152(6):505-8. PubMed ID: 23035128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of the catalytic mechanism of Helicobacter pylori glutamate racemase.
    Mixcoha E; Garcia-Viloca M; Lluch JM; González-Lafont A
    J Phys Chem B; 2012 Oct; 116(41):12406-14. PubMed ID: 22984984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple substrate binding states and chiral recognition in cofactor-independent glutamate racemase: a molecular dynamics study.
    Möbitz H; Bruice TC
    Biochemistry; 2004 Aug; 43(30):9685-94. PubMed ID: 15274623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site residues of glutamate racemase.
    Glavas S; Tanner ME
    Biochemistry; 2001 May; 40(21):6199-204. PubMed ID: 11371180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.