BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30194851)

  • 1. Structure of Asp-bound peptidase E from Salmonella enterica: Active site at dimer interface illuminates Asp recognition.
    Yadav P; Goyal VD; Gaur NK; Kumar A; Gokhale SM; Makde RD
    FEBS Lett; 2018 Oct; 592(19):3346-3354. PubMed ID: 30194851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic triad heterogeneity in S51 peptidase family: Structural basis for functional variability.
    Yadav P; Goyal VD; Chandravanshi K; Kumar A; Gokhale SM; Jamdar SN; Makde RD
    Proteins; 2019 Aug; 87(8):679-692. PubMed ID: 30968972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M42 aminopeptidase catalytic site: the structural and functional role of a strictly conserved aspartate residue.
    Dutoit R; Brandt N; Van Gompel T; Van Elder D; Van Dyck J; Sobott F; Droogmans L
    Proteins; 2020 Dec; 88(12):1639-1647. PubMed ID: 32673419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of isoaspartyl aminopeptidase in complex with L-aspartate.
    Michalska K; Brzezinski K; Jaskolski M
    J Biol Chem; 2005 Aug; 280(31):28484-91. PubMed ID: 15946951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of aspartyl dipeptidase from Xenopus laevis revealed ligand binding induced loop ordering and catalytic triad assembly.
    Kumar A; Singh R; Ghosh B; Makde RD
    Proteins; 2022 Jan; 90(1):299-308. PubMed ID: 34431561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of peptidase T from Salmonella typhimurium.
    Håkansson K; Miller CG
    Eur J Biochem; 2002 Jan; 269(2):443-50. PubMed ID: 11856302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.
    Wahba HM; Lecoq L; Stevenson M; Mansour A; Cappadocia L; Lafrance-Vanasse J; Wilkinson KJ; Sygusch J; Wilcox DE; Omichinski JG
    Biochemistry; 2016 Feb; 55(7):1070-81. PubMed ID: 26820485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A.
    Jin L; Stec B; Lipscomb WN; Kantrowitz ER
    Proteins; 1999 Dec; 37(4):729-42. PubMed ID: 10651286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a feruloyl esterase from Aspergillus niger.
    McAuley KE; Svendsen A; Patkar SA; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):878-87. PubMed ID: 15103133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid molecular structure of the giant protease tripeptidyl peptidase II.
    Chuang CK; Rockel B; Seyit G; Walian PJ; Schönegge AM; Peters J; Zwart PH; Baumeister W; Jap BK
    Nat Struct Mol Biol; 2010 Aug; 17(8):990-6. PubMed ID: 20676100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.
    Singh AK; Ekka MK; Kaushik A; Pandya V; Singh RP; Banerjee S; Mittal M; Singh V; Kumaran S
    Biochemistry; 2017 Sep; 56(37):5011-5025. PubMed ID: 28805060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Na(+)-dependent citrate transport from the structure of an asymmetrical CitS dimer.
    Wöhlert D; Grötzinger MJ; Kühlbrandt W; Yildiz Ö
    Elife; 2015 Dec; 4():e09375. PubMed ID: 26636752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA; Beernink PT
    Protein Sci; 2017 Nov; 26(11):2221-2228. PubMed ID: 28833948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.
    Nakamichi Y; Oiki S; Mikami B; Murata K; Hashimoto W
    Protein J; 2016 Aug; 35(4):300-9. PubMed ID: 27402448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting cobamide diversity through structural and functional analyses of the base-activating CobT enzyme of Salmonella enterica.
    Chan CH; Newmister SA; Talyor K; Claas KR; Rayment I; Escalante-Semerena JC
    Biochim Biophys Acta; 2014 Jan; 1840(1):464-75. PubMed ID: 24121107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.
    Colombo M; Girard E; Franzetti B
    Sci Rep; 2016 Feb; 6():20876. PubMed ID: 26853450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcus aureus aminopeptidase S is a founding member of a new peptidase clan.
    Odintsov SG; Sabała I; Bourenkov G; Rybin V; Bochtler M
    J Biol Chem; 2005 Jul; 280(30):27792-9. PubMed ID: 15932875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium.
    Scott WG; Milligan DL; Milburn MV; Privé GG; Yeh J; Koshland DE; Kim SH
    J Mol Biol; 1993 Jul; 232(2):555-73. PubMed ID: 8345523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the dinuclear zinc aminopeptidase PepV from Lactobacillus delbrueckii unravels its preference for dipeptides.
    Jozic D; Bourenkow G; Bartunik H; Scholze H; Dive V; Henrich B; Huber R; Bode W; Maskos K
    Structure; 2002 Aug; 10(8):1097-106. PubMed ID: 12176387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a bacterial signal Peptide peptidase.
    Kim AC; Oliver DC; Paetzel M
    J Mol Biol; 2008 Feb; 376(2):352-66. PubMed ID: 18164727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.