BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30194851)

  • 41. Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS.
    Kim JW; Kim S; Kim S; Lee H; Lee JO; Jin MS
    Sci Rep; 2017 May; 7(1):2548. PubMed ID: 28566738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution structures of the ligand binding domain of the wild-type bacterial aspartate receptor.
    Yeh JI; Biemann HP; Privé GG; Pandit J; Koshland DE; Kim SH
    J Mol Biol; 1996 Sep; 262(2):186-201. PubMed ID: 8831788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose.
    Kubiak RL; Holden HM
    Biochemistry; 2012 Jan; 51(4):867-78. PubMed ID: 22220494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase (RmlD) shows a new Mg2+-dependent dimerization mode.
    Blankenfeldt W; Kerr ID; Giraud MF; McMiken HJ; Leonard G; Whitfield C; Messner P; Graninger M; Naismith JH
    Structure; 2002 Jun; 10(6):773-86. PubMed ID: 12057193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atomic resolution analysis of the catalytic site of an aspartic proteinase and an unexpected mode of binding by short peptides.
    Erskine PT; Coates L; Mall S; Gill RS; Wood SP; Myles DA; Cooper JB
    Protein Sci; 2003 Aug; 12(8):1741-9. PubMed ID: 12876323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze.
    Keenleyside WJ; Clarke AJ; Whitfield C
    J Bacteriol; 2001 Jan; 183(1):77-85. PubMed ID: 11114903
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc.
    Ilari A; Alaleona F; Tria G; Petrarca P; Battistoni A; Zamparelli C; Verzili D; Falconi M; Chiancone E
    Biochim Biophys Acta; 2014 Jan; 1840(1):535-44. PubMed ID: 24128931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis for the unusual specificity of Escherichia coli aminopeptidase N.
    Addlagatta A; Gay L; Matthews BW
    Biochemistry; 2008 May; 47(19):5303-11. PubMed ID: 18416562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational study of IAG-nucleoside hydrolase: determination of the preferred ground state conformation and the role of active site residues.
    Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2005 May; 44(21):7805-17. PubMed ID: 15909995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica.
    Desmarais W; Bienvenue DL; Bzymek KP; Petsko GA; Ringe D; Holz RC
    J Biol Inorg Chem; 2006 Jun; 11(4):398-408. PubMed ID: 16596389
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structures of pyrrolidone-carboxylate peptidase I from Deinococcus radiodurans reveal the mechanism of L-pyroglutamate recognition.
    Agrawal R; Singh R; Kumar A; Kumar A; Makde RD
    Acta Crystallogr D Struct Biol; 2019 Mar; 75(Pt 3):308-316. PubMed ID: 30950401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of α,β- and α,γ-diamino acid scaffolds for the inhibition of M1 family aminopeptidases.
    Gumpena R; Kishor C; Ganji RJ; Addlagatta A
    ChemMedChem; 2011 Nov; 6(11):1971-6. PubMed ID: 22025387
    [No Abstract]   [Full Text] [Related]  

  • 53. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.
    Debler EW; Jain K; Warmack RA; Feng Y; Clarke SG; Blobel G; Stavropoulos P
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2068-73. PubMed ID: 26858449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two-domain aminopeptidase of M1 family: Structural features for substrate binding and gating in absence of C-terminal domain.
    Agrawal R; Goyal VD; Kumar A; Gaur NK; Jamdar SN; Kumar A; Makde RD
    J Struct Biol; 2019 Oct; 208(1):51-60. PubMed ID: 31351924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The structural analysis and the role of calcium binding site for thermal stability in mannanase.
    Kumagai Y; Kawakami K; Mukaihara T; Kimura M; Hatanaka T
    Biochimie; 2012 Dec; 94(12):2783-90. PubMed ID: 23009928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The structure of hyperthermophilic β-N-acetylglucosaminidase reveals a novel dimer architecture associated with the active site.
    Mine S; Kado Y; Watanabe M; Fukuda Y; Abe Y; Ueda T; Kawarabayasi Y; Inoue T; Ishikawa K
    FEBS J; 2014 Nov; 281(22):5092-103. PubMed ID: 25227262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism.
    Goettig P; Groll M; Kim JS; Huber R; Brandstetter H
    EMBO J; 2002 Oct; 21(20):5343-52. PubMed ID: 12374735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.