BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30194851)

  • 61. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.
    Vetting MW; Magnet S; Nieves E; Roderick SL; Blanchard JS
    Chem Biol; 2004 Apr; 11(4):565-73. PubMed ID: 15123251
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular architecture of an N-formyltransferase from Salmonella enterica O60.
    Woodford CR; Thoden JB; Holden HM
    J Struct Biol; 2017 Dec; 200(3):267-278. PubMed ID: 28263875
    [TBL] [Abstract][Full Text] [Related]  

  • 63. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases.
    Oda K
    J Biochem; 2012 Jan; 151(1):13-25. PubMed ID: 22016395
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The X-ray structure of the zinc transporter ZnuA from Salmonella enterica discloses a unique triad of zinc-coordinating histidines.
    Ilari A; Alaleona F; Petrarca P; Battistoni A; Chiancone E
    J Mol Biol; 2011 Jun; 409(4):630-41. PubMed ID: 21530543
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis.
    Graham SC; Lilley PE; Lee M; Schaeffer PM; Kralicek AV; Dixon NE; Guss JM
    Biochemistry; 2006 Jan; 45(3):964-75. PubMed ID: 16411772
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum.
    Fujinaga M; Cherney MM; Oyama H; Oda K; James MN
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3364-9. PubMed ID: 14993599
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida.
    Fukumoto M; Kudou D; Murano S; Shiba T; Sato D; Tamura T; Harada S; Inagaki K
    Biosci Biotechnol Biochem; 2012; 76(7):1275-84. PubMed ID: 22785484
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.
    Matsunami H; Yoon YH; Meshcheryakov VA; Namba K; Samatey FA
    Sci Rep; 2016 Jun; 6():27399. PubMed ID: 27273476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure of L-serine dehydratase from Legionella pneumophila: novel use of the C-terminal cysteine as an intrinsic competitive inhibitor.
    Thoden JB; Holden HM; Grant GA
    Biochemistry; 2014 Dec; 53(48):7615-24. PubMed ID: 25380533
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily.
    Widderich N; Kobus S; Höppner A; Riclea R; Seubert A; Dickschat JS; Heider J; Smits SH; Bremer E
    PLoS One; 2016; 11(3):e0151285. PubMed ID: 26986827
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural analysis of the active site architecture of the VapC toxin from Shigella flexneri.
    Xu K; Dedic E; Brodersen DE
    Proteins; 2016 Jul; 84(7):892-9. PubMed ID: 26833558
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d.
    Rutkiewicz-Krotewicz M; Pietrzyk-Brzezinska AJ; Sekula B; Cieśliński H; Wierzbicka-Woś A; Kur J; Bujacz A
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1049-61. PubMed ID: 27599737
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The crystal structure of an intermediate dimer of aspergilloglutamic peptidase that mimics the enzyme-activation product complex produced upon autoproteolysis.
    Sasaki H; Kubota K; Lee WC; Ohtsuka J; Kojima M; Iwata S; Nakagawa A; Takahashi K; Tanokura M
    J Biochem; 2012 Jul; 152(1):45-52. PubMed ID: 22569035
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural basis for the unusual substrate specificity of unique two-domain M1 metallopeptidase.
    Agrawal R; Goyal VD; Singh R; Kumar A; Jamdar SN; Kumar A; Makde RD
    Int J Biol Macromol; 2020 Mar; 147():304-313. PubMed ID: 31923495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3'')(9) adenyltransferase.
    Chen Y; Näsvall J; Wu S; Andersson DI; Selmer M
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2267-77. PubMed ID: 26527143
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The structure of DcrB, a lipoprotein from Salmonella enterica, reveals flexibility in the N-terminal segment of the Mog1p/PsbP-like fold.
    Rasmussen DM; Soens RW; Davie TJ; Vaneerd CK; Bhattacharyya B; May JF
    J Struct Biol; 2018 Dec; 204(3):513-518. PubMed ID: 30339832
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Capture of a labile substrate by expulsion of water molecules from the active site of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella enterica.
    Cheong CG; Escalante-Semerena JC; Rayment I
    J Biol Chem; 2002 Oct; 277(43):41120-7. PubMed ID: 12101181
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dimerization and antidepressant recognition at noradrenaline transporter.
    Zhang H; Yin YL; Dai A; Zhang T; Zhang C; Wu C; Hu W; He X; Pan B; Jin S; Yuan Q; Wang MW; Yang D; Xu HE; Jiang Y
    Nature; 2024 Jun; 630(8015):247-254. PubMed ID: 38750358
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular mechanism for eliminylation, a newly discovered post-translational modification.
    Ke Z; Smith GK; Zhang Y; Guo H
    J Am Chem Soc; 2011 Jul; 133(29):11103-5. PubMed ID: 21710993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.