These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance. Morales MA; Assana S; Cai X; Chow K; Haji-Valizadeh H; Sai E; Tsao C; Matos J; Rodriguez J; Berg S; Whitehead N; Pierce P; Goddu B; Manning WJ; Nezafat R J Cardiovasc Magn Reson; 2022 Aug; 24(1):47. PubMed ID: 35948936 [TBL] [Abstract][Full Text] [Related]
4. Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI. Jaubert O; Montalt-Tordera J; Knight D; Coghlan GJ; Arridge S; Steeden JA; Muthurangu V Magn Reson Med; 2021 Oct; 86(4):1904-1916. PubMed ID: 34032308 [TBL] [Abstract][Full Text] [Related]
5. Whole-heart cine MRI in a single breath-hold--a compressed sensing accelerated 3D acquisition technique for assessment of cardiac function. Wech T; Pickl W; Tran-Gia J; Ritter C; Beer M; Hahn D; Köstler H Rofo; 2014 Jan; 186(1):37-41. PubMed ID: 23996623 [TBL] [Abstract][Full Text] [Related]
6. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Zhang X; Xie G; Lu N; Zhu Y; Wei Z; Su S; Shi C; Yan F; Liu X; Qiu B; Fan Z Magn Reson Med; 2019 May; 81(5):3234-3244. PubMed ID: 30474151 [TBL] [Abstract][Full Text] [Related]
7. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. Steeden JA; Kowalik GT; Tann O; Hughes M; Mortensen KH; Muthurangu V J Cardiovasc Magn Reson; 2018 Dec; 20(1):79. PubMed ID: 30518390 [TBL] [Abstract][Full Text] [Related]
8. A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease. Phair A; Fotaki A; Felsner L; Fletcher TJ; Qi H; Botnar RM; Prieto C J Cardiovasc Magn Reson; 2024 Summer; 26(1):101039. PubMed ID: 38521391 [TBL] [Abstract][Full Text] [Related]
9. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN). Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668 [TBL] [Abstract][Full Text] [Related]
10. From Compressed-Sensing to Deep Learning MR: Comparative Biventricular Cardiac Function Analysis in a Patient Cohort. Yan X; Luo Y; Chen X; Chen EZ; Liu Q; Zou L; Bao Y; Huang L; Xia L J Magn Reson Imaging; 2024 Apr; 59(4):1231-1241. PubMed ID: 37435633 [TBL] [Abstract][Full Text] [Related]
11. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531 [TBL] [Abstract][Full Text] [Related]
12. Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation. Pednekar A; Kocaoglu M; Wang H; Tanimoto A; Tkach JA; Lang S; Taylor MD J Magn Reson Imaging; 2024 Aug; 60(2):640-650. PubMed ID: 37855257 [TBL] [Abstract][Full Text] [Related]
13. Accelerated ferumoxytol-enhanced 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) cardiovascular MRI: validation in pediatric congenital heart disease. Zhou Z; Han F; Rapacchi S; Nguyen KL; Brunengraber DZ; Kim GJ; Finn JP; Hu P NMR Biomed; 2017 Jan; 30(1):. PubMed ID: 27862507 [TBL] [Abstract][Full Text] [Related]
14. Deep artifact suppression for spiral real-time phase contrast cardiac magnetic resonance imaging in congenital heart disease. Jaubert O; Steeden J; Montalt-Tordera J; Arridge S; Kowalik GT; Muthurangu V Magn Reson Imaging; 2021 Nov; 83():125-132. PubMed ID: 34419611 [TBL] [Abstract][Full Text] [Related]
15. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation. Moghari MH; Barthur A; Amaral ME; Geva T; Powell AJ Magn Reson Med; 2018 Jul; 80(1):181-189. PubMed ID: 29222852 [TBL] [Abstract][Full Text] [Related]
16. Real-time cardiac magnetic resonance cine imaging with sparse sampling and iterative reconstruction for left-ventricular measures: Comparison with gold-standard segmented steady-state free precession. Camargo GC; Erthal F; Sabioni L; Penna F; Strecker R; Schmidt M; Zenge MO; Lima RS; Gottlieb I Magn Reson Imaging; 2017 May; 38():138-144. PubMed ID: 28065694 [TBL] [Abstract][Full Text] [Related]
18. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset. Chen D; Schaeffter T; Kolbitsch C; Kofler A Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783 [TBL] [Abstract][Full Text] [Related]
19. CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Küstner T; Fuin N; Hammernik K; Bustin A; Qi H; Hajhosseiny R; Masci PG; Neji R; Rueckert D; Botnar RM; Prieto C Sci Rep; 2020 Aug; 10(1):13710. PubMed ID: 32792507 [TBL] [Abstract][Full Text] [Related]
20. Real-time, single breath-hold, multi-slice, 2D cine radial MR image reconstruction using sc-GROG k-t ESPIRiT. Aslam I; Crowe LA; Kassai M; Qazi SA; Omer H; Vallée JP Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36322961 [No Abstract] [Full Text] [Related] [Next] [New Search]