BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 30194926)

  • 1. Sphingolipids and lipid rafts: Novel concepts and methods of analysis.
    Bieberich E
    Chem Phys Lipids; 2018 Nov; 216():114-131. PubMed ID: 30194926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
    Hattersley KJ; Hein LK; Fuller M
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):62-7. PubMed ID: 24220330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lipid matrix model of membrane raft structure.
    Quinn PJ
    Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane domains and the "lipid raft" concept.
    Sonnino S; Prinetti A
    Curr Med Chem; 2013; 20(1):4-21. PubMed ID: 23150999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-ordered microdomains in lipid rafts and plasma membrane of U-87 MG cells: a time-resolved fluorescence study.
    Sinha M; Mishra S; Joshi PG
    Eur Biophys J; 2003 Jul; 32(4):381-91. PubMed ID: 12851796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The state of lipid rafts: from model membranes to cells.
    Edidin M
    Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid rafts as major platforms for signaling regulation in cancer.
    Mollinedo F; Gajate C
    Adv Biol Regul; 2015 Jan; 57():130-46. PubMed ID: 25465296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells.
    van Gestel RA; Brouwers JF; Ultee A; Helms JB; Gadella BM
    Cell Tissue Res; 2016 Jan; 363(1):129-145. PubMed ID: 26378009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support.
    Siddiqui RA; Harvey KA; Zaloga GP; Stillwell W
    Nutr Clin Pract; 2007 Feb; 22(1):74-88. PubMed ID: 17242459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid.
    Silva LC; de Almeida RF; Castro BM; Fedorov A; Prieto M
    Biophys J; 2007 Jan; 92(2):502-16. PubMed ID: 17056734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers.
    Wang TY; Silvius JR
    Biophys J; 2003 Jan; 84(1):367-78. PubMed ID: 12524290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the nature of lipid raft membranes.
    Niemelä PS; Ollila S; Hyvönen MT; Karttunen M; Vattulainen I
    PLoS Comput Biol; 2007 Feb; 3(2):e34. PubMed ID: 17319738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide.
    Xu X; Bittman R; Duportail G; Heissler D; Vilcheze C; London E
    J Biol Chem; 2001 Sep; 276(36):33540-6. PubMed ID: 11432870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do local anesthetics interact preferentially with membrane lipid rafts? Comparative interactivities with raft-like membranes.
    Tsuchiya H; Ueno T; Mizogami M; Takakura K
    J Anesth; 2010 Aug; 24(4):639-42. PubMed ID: 20414686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.