BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

782 related articles for article (PubMed ID: 30195084)

  • 1. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture.
    Barba A; Diez-Escudero A; Maazouz Y; Rappe K; Espanol M; Montufar EB; Bonany M; Sadowska JM; Guillem-Marti J; Öhman-Mägi C; Persson C; Manzanares MC; Franch J; Ginebra MP
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41722-41736. PubMed ID: 29116737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Biomimicry in the Design of Osteoinductive Bone Substitutes: Nanoscale Matters.
    Barba A; Diez-Escudero A; Espanol M; Bonany M; Sadowska JM; Guillem-Marti J; Öhman-Mägi C; Persson C; Manzanares MC; Franch J; Ginebra MP
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8818-8830. PubMed ID: 30740968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.
    Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X
    Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks.
    Raymond S; Maazouz Y; Montufar EB; Perez RA; González B; Konka J; Kaiser J; Ginebra MP
    Acta Biomater; 2018 Jul; 75():451-462. PubMed ID: 29842972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis.
    Chen G; Sun Y; Lu F; Jiang A; Subedi D; Kong P; Wang X; Yu T; Chi H; Song C; Liu K; Qi P; Yan J; Ji Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109842. PubMed ID: 31500042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Geometry and Architecture on the
    Hallman M; Driscoll JA; Lubbe R; Jeong S; Chang K; Haleem M; Jakus A; Pahapill R; Yun C; Shah R; Hsu WK; Stock SR; Hsu EL
    Tissue Eng Part A; 2021 Jan; 27(1-2):26-36. PubMed ID: 32098585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment.
    Raymond Y; Bonany M; Lehmann C; Thorel E; Benítez R; Franch J; Espanol M; Solé-Martí X; Manzanares MC; Canal C; Ginebra MP
    Acta Biomater; 2021 Nov; 135():671-688. PubMed ID: 34496283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation.
    Mebarki M; Coquelin L; Layrolle P; Battaglia S; Tossou M; Hernigou P; Rouard H; Chevallier N
    Acta Biomater; 2017 Sep; 59():94-107. PubMed ID: 28636926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.