These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30195204)
41. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS. Gritsenko MA; Xu Z; Liu T; Smith RD Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748 [TBL] [Abstract][Full Text] [Related]
42. Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Zhai Q; Xiao Y; Zhao J; Tian F; Zhang H; Narbad A; Chen W Sci Rep; 2017 Apr; 7(1):1182. PubMed ID: 28446769 [TBL] [Abstract][Full Text] [Related]
43. Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia. Choi S; Cho K; Kim J; Yea K; Park G; Lee J; Ryu SH; Kim J; Kim YH Biochem Biophys Res Commun; 2009 May; 383(1):135-40. PubMed ID: 19336224 [TBL] [Abstract][Full Text] [Related]
44. Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants. Vélez-Bermúdez IC; Wen TN; Lan P; Schmidt W Methods Mol Biol; 2016; 1450():213-21. PubMed ID: 27424757 [TBL] [Abstract][Full Text] [Related]
45. Differential expression analysis of the broiler tracheal proteins responsible for the immune response and muscle contraction induced by high concentration of ammonia using iTRAQ-coupled 2D LC-MS/MS. Xiong Y; Tang X; Meng Q; Zhang H Sci China Life Sci; 2016 Nov; 59(11):1166-1176. PubMed ID: 27761697 [TBL] [Abstract][Full Text] [Related]
46. Biomarker discovery and proteomic evaluation of cadmium toxicity on a collembolan species, Paronychiurus kimi (Lee). Son J; Lee SE; Park BS; Jung J; Park HS; Bang JY; Kang GY; Cho K Proteomics; 2011 Jun; 11(11):2294-307. PubMed ID: 21548089 [TBL] [Abstract][Full Text] [Related]
47. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium. Poynton HC; Taylor NS; Hicks J; Colson K; Chan S; Clark C; Scanlan L; Loguinov AV; Vulpe C; Viant MR Environ Sci Technol; 2011 Apr; 45(8):3710-7. PubMed ID: 21417318 [TBL] [Abstract][Full Text] [Related]
48. iTRAQ-based proteomic profiling of a Microbacterium sp. strain during benzo(a)pyrene removal under anaerobic conditions. Dou J; Qin W; Ding A; Liu X; Zhu Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8365-8377. PubMed ID: 29032469 [TBL] [Abstract][Full Text] [Related]
49. Genetic Basis of Differential Heat Resistance between Two Species of Congeneric Freshwater Snails: Insights from Quantitative Proteomics and Base Substitution Rate Analysis. Mu H; Sun J; Fang L; Luan T; Williams GA; Cheung SG; Wong CK; Qiu JW J Proteome Res; 2015 Oct; 14(10):4296-308. PubMed ID: 26290311 [TBL] [Abstract][Full Text] [Related]
50. Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Capello M; Ferri-Borgogno S; Riganti C; Chattaragada MS; Principe M; Roux C; Zhou W; Petricoin EF; Cappello P; Novelli F Oncotarget; 2016 Feb; 7(5):5598-612. PubMed ID: 26734996 [TBL] [Abstract][Full Text] [Related]
51. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. Zhang J; Zhang L; Qiu J; Nian H J Biosci Bioeng; 2015 Oct; 120(4):359-63. PubMed ID: 25747181 [TBL] [Abstract][Full Text] [Related]
52. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494 [TBL] [Abstract][Full Text] [Related]
53. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study. Marmiroli M; Imperiale D; Maestri E; Marmiroli N Chemosphere; 2013 Oct; 93(7):1333-44. PubMed ID: 23981839 [TBL] [Abstract][Full Text] [Related]
54. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics for the investigation of the effect of Hugan Qingzhi on non-alcoholic fatty liver disease in rats. Yao X; Xia F; Tang W; Xiao C; Yang M; Zhou B J Ethnopharmacol; 2018 Feb; 212():208-215. PubMed ID: 29031784 [TBL] [Abstract][Full Text] [Related]
55. Dissecting the iTRAQ Data Analysis. Aggarwal S; Yadav AK Methods Mol Biol; 2016; 1362():277-91. PubMed ID: 26519184 [TBL] [Abstract][Full Text] [Related]
56. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. Sun L; Xu D; Xu Q; Sun J; Xing L; Zhang L; Yang H Comp Biochem Physiol Part D Genomics Proteomics; 2017 Jun; 22():39-49. PubMed ID: 28189057 [TBL] [Abstract][Full Text] [Related]
57. Differential expression of two plant-like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondii. Dzierszinski F; Mortuaire M; Dendouga N; Popescu O; Tomavo S J Mol Biol; 2001 Jun; 309(5):1017-27. PubMed ID: 11399076 [TBL] [Abstract][Full Text] [Related]
58. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. Ji H; Guo W; Niu C; Li Y; Lian S; Zhan X; Guo J; Zhen L; Yang H; Li S; Wang J J Anim Physiol Anim Nutr (Berl); 2020 May; 104(3):838-846. PubMed ID: 31821655 [TBL] [Abstract][Full Text] [Related]
59. Transcriptional regulation by an upstream repression sequence from the yeast enolase gene ENO1. Carmen AA; Brindle PK; Park CS; Holland MJ Yeast; 1995 Sep; 11(11):1031-43. PubMed ID: 7502579 [TBL] [Abstract][Full Text] [Related]
60. Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach. Juang YM; Lai BH; Chien HJ; Ho M; Cheng TJ; Lai CC Rapid Commun Mass Spectrom; 2014 Apr; 28(8):974-80. PubMed ID: 24623703 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]