These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30195302)

  • 1. Influence of spatial degeneracy on rotational spectroscopy: Three-wave mixing and enantiomeric state separation of chiral molecules.
    Lehmann KK
    J Chem Phys; 2018 Sep; 149(9):094201. PubMed ID: 30195302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational spectroscopy and three-wave mixing of 4-carvomenthenol: A technical guide to measuring chirality in the microwave regime.
    Shubert VA; Schmitz D; Medcraft C; Krin A; Patterson D; Doyle JM; Schnell M
    J Chem Phys; 2015 Jun; 142(21):214201. PubMed ID: 26049489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-Specific Enrichment of Chiral Conformers with Microwave Spectroscopy.
    Pérez C; Steber AL; Krin A; Schnell M
    J Phys Chem Lett; 2018 Aug; 9(16):4539-4543. PubMed ID: 30047269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of aluminum corroles absorption bands to electronic transitions by femtosecond polarization resolved VIS-pump IR-probe spectroscopy.
    Yang Y; Jones D; von Haimberger T; Linke M; Wagnert L; Berg A; Levanon H; Zacarias A; Mahammed A; Gross Z; Heyne K
    J Phys Chem A; 2012 Jan; 116(3):1023-9. PubMed ID: 22201283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational spectrum of NSF3 in the ground and v5 = 1 vibrational states: observation of Q-branch perturbation-allowed transitions with delta(k - l) = 0, +/-3, +/-6 and anomalies in the rovibrational structure of the v5 = 1 state.
    Macholl S; Mäder H; Harder H; Margulès L; Dréan P; Cosléou J; Demaison J; Pracna P
    J Phys Chem A; 2009 Jan; 113(4):668-79. PubMed ID: 19123852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducing transient enantiomeric excess in a molecular quantum racemic mixture with microwave fields.
    Sun W; Tikhonov DS; Singh H; Steber AL; Pérez C; Schnell M
    Nat Commun; 2023 Feb; 14(1):934. PubMed ID: 36807276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing Chirality with Rotational Spectroscopy.
    Domingos SR; Pérez C; Schnell M
    Annu Rev Phys Chem; 2018 Apr; 69():499-519. PubMed ID: 29490206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiomer-Specific State Transfer of Chiral Molecules.
    Eibenberger S; Doyle J; Patterson D
    Phys Rev Lett; 2017 Mar; 118(12):123002. PubMed ID: 28388207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive chiral analysis via microwave three-wave mixing.
    Patterson D; Doyle JM
    Phys Rev Lett; 2013 Jul; 111(2):023008. PubMed ID: 23889397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of enantiomers for chiral molecules using analytically designed microwave pulses.
    Gong X; Guo Y; Wang C; Luo X; Shu CC
    Phys Chem Chem Phys; 2022 Aug; 24(31):18722-18728. PubMed ID: 35899833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of vibrationally resonant sum- and difference-frequency-generation spectra of chiral molecules in solutions: three-wave-mixing vibrational optical activity.
    Choi JH; Cheon S; Cho M
    J Chem Phys; 2010 Feb; 132(7):074506. PubMed ID: 20170236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-complete chiral selection in rotational quantum states.
    Lee J; Abdiha E; Sartakov BG; Meijer G; Eibenberger-Arias S
    Nat Commun; 2024 Aug; 15(1):7441. PubMed ID: 39198398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirped-pulse millimeter-wave spectroscopy: spectrum, dynamics, and manipulation of Rydberg-Rydberg transitions.
    Colombo AP; Zhou Y; Prozument K; Coy SL; Field RW
    J Chem Phys; 2013 Jan; 138(1):014301. PubMed ID: 23298035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiomeric Analysis of Chiral Isotopomers via Microwave Three-Wave Mixing.
    Satterthwaite L; Pérez C; Steber AL; Finestone D; Broadrup RL; Patterson D
    J Phys Chem A; 2019 Apr; 123(14):3194-3198. PubMed ID: 30883121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millimeter-wave spectroscopy of S2Cl2: a candidate molecule for measuring ortho-para transition.
    Dehghani ZT; Ota S; Mizoguchi A; Kanamori H
    J Phys Chem A; 2013 Oct; 117(39):10041-6. PubMed ID: 23634992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying enantiomers in mixtures of chiral molecules with broadband microwave spectroscopy.
    Shubert VA; Schmitz D; Patterson D; Doyle JM; Schnell M
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1152-5. PubMed ID: 24311230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral Control of Gas-Phase Molecules using Microwave Pulses.
    Singh H; Berggötz FEL; Sun W; Schnell M
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202219045. PubMed ID: 36866692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules.
    Leibscher M; Giesen TF; Koch CP
    J Chem Phys; 2019 Jul; 151(1):014302. PubMed ID: 31272176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of the chiroptical properties of molecules with isotopically engendered chirality.
    Dierksen M; Grimme S
    J Chem Phys; 2006 May; 124(17):174301. PubMed ID: 16689565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Induced Diastereomers for Chiral Separation.
    Yachmenev A; Onvlee J; Zak E; Owens A; Küpper J
    Phys Rev Lett; 2019 Dec; 123(24):243202. PubMed ID: 31922822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.