These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 30195306)

  • 1. Affinity, kinetics, and pathways of anisotropic ligands binding to hydrophobic model pockets.
    Weiß RG; Chudoba R; Setny P; Dzubiella J
    J Chem Phys; 2018 Sep; 149(9):094902. PubMed ID: 30195306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles for Tuning Hydrophobic Ligand-Receptor Binding Kinetics.
    Weiß RG; Setny P; Dzubiella J
    J Chem Theory Comput; 2017 Jun; 13(6):3012-3019. PubMed ID: 28494155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent Fluctuations Induce Non-Markovian Kinetics in Hydrophobic Pocket-Ligand Binding.
    Weiß RG; Setny P; Dzubiella J
    J Phys Chem B; 2016 Aug; 120(33):8127-36. PubMed ID: 27009557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting-controlled binding of ligands to hydrophobic pockets.
    Setny P; Wang Z; Cheng LT; Li B; McCammon JA; Dzubiella J
    Phys Rev Lett; 2009 Oct; 103(18):187801. PubMed ID: 19905832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics.
    Setny P; Baron R; Michael Kekenes-Huskey P; McCammon JA; Dzubiella J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1197-202. PubMed ID: 23297241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained molecular dynamics simulations of protein-ligand binding.
    Negami T; Shimizu K; Terada T
    J Comput Chem; 2014 Sep; 35(25):1835-45. PubMed ID: 25043724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How hydrophobic drying forces impact the kinetics of molecular recognition.
    Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13277-82. PubMed ID: 23901110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape variation in protein binding pockets and their ligands.
    Kahraman A; Morris RJ; Laskowski RA; Thornton JM
    J Mol Biol; 2007 Apr; 368(1):283-301. PubMed ID: 17337005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.
    Freed AS; Garde S; Cramer SM
    J Phys Chem B; 2011 Nov; 115(45):13320-7. PubMed ID: 21942536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data.
    Smith LJ; Roby Y; Allison JR; van Gunsteren WF
    Biochemistry; 2013 Jul; 52(30):5029-38. PubMed ID: 23834513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins.
    Bustamante JP; Abbruzzetti S; Marcelli A; Gauto D; Boechi L; Bonamore A; Boffi A; Bruno S; Feis A; Foggi P; Estrin DA; Viappiani C
    J Phys Chem B; 2014 Feb; 118(5):1234-45. PubMed ID: 24410478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Binding Pocket Dynamics.
    Stank A; Kokh DB; Fuller JC; Wade RC
    Acc Chem Res; 2016 May; 49(5):809-15. PubMed ID: 27110726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and molecular dynamics of glutamine transaminase K/cysteine conjugate beta-lyase.
    Venhorst J; ter Laak AM; Meijer M; van de Wetering I; Commandeur JN; Rooseboom M; Vermeulen NP
    J Mol Graph Model; 2003 Sep; 22(1):55-70. PubMed ID: 12798391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of heterocyclic aromatic substituents on binding affinities at two distinct sites of somatostatin receptors. Correlation with the electrostatic potential of the substituents.
    Prasad V; Birzin ET; McVaugh CT; Van Rijn RD; Rohrer SP; Chicchi G; Underwood DJ; Thornton ER; Smith AB; Hirschmann R
    J Med Chem; 2003 May; 46(10):1858-69. PubMed ID: 12723949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors.
    Shen J; Li W; Liu G; Tang Y; Jiang H
    J Phys Chem B; 2009 Jul; 113(30):10436-44. PubMed ID: 19583238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.
    Elghobashi-Meinhardt N
    Biochemistry; 2014 Oct; 53(41):6603-14. PubMed ID: 25251378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.