These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Dynamical Study of the Dissociative Chemisorption of CHD Gerrits N; Chadwick H; Kroes GJ J Phys Chem C Nanomater Interfaces; 2019 Oct; 123(39):24013-24023. PubMed ID: 31602282 [TBL] [Abstract][Full Text] [Related]
8. Rotational effects on the dissociation dynamics of CHD3 on Pt(111). Füchsel G; Thomas PS; den Uyl J; Öztürk Y; Nattino F; Meyer HD; Kroes GJ Phys Chem Chem Phys; 2016 Mar; 18(11):8174-85. PubMed ID: 26925965 [TBL] [Abstract][Full Text] [Related]
9. Direct or Precursor-Mediated? Mechanisms for Methane Dissociation on Pt(110)-(2 × 1) at Both Low and High Incidence Energies. Wei F; Lin S; Guo H JACS Au; 2023 Oct; 3(10):2835-2843. PubMed ID: 37885592 [TBL] [Abstract][Full Text] [Related]
10. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies. Nave S; Jackson B J Chem Phys; 2009 Feb; 130(5):054701. PubMed ID: 19206983 [TBL] [Abstract][Full Text] [Related]
11. Accurate Probabilities for Highly Activated Reaction of Polyatomic Molecules on Surfaces Using a High-Dimensional Neural Network Potential: CHD Gerrits N; Shakouri K; Behler J; Kroes GJ J Phys Chem Lett; 2019 Apr; 10(8):1763-1768. PubMed ID: 30922058 [TBL] [Abstract][Full Text] [Related]
12. Dissociative chemisorption of methane on Pt(110)-(1×2): effects of lattice motion on reactions at step edges. Han D; Nave S; Jackson B J Phys Chem A; 2013 Sep; 117(36):8651-9. PubMed ID: 23634878 [TBL] [Abstract][Full Text] [Related]
13. Steps on Pt stereodynamically filter sticking of O Cao K; van Lent R; Kleyn AW; Kurahashi M; Juurlink LBF Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13862-13866. PubMed ID: 31142642 [TBL] [Abstract][Full Text] [Related]
14. Methane dissociation on Pt(111): Searching for a specific reaction parameter density functional. Nattino F; Migliorini D; Bonfanti M; Kroes GJ J Chem Phys; 2016 Jan; 144(4):044702. PubMed ID: 26827223 [TBL] [Abstract][Full Text] [Related]
15. Quantum state and surface-site-resolved studies of methane chemisorption by vibrational spectroscopies. Gutiérrez-González A; Beck RD Phys Chem Chem Phys; 2020 Aug; 22(31):17448-17459. PubMed ID: 32725003 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory study of the water dissociation on platinum surfaces: general trends. Fajín JL; D S Cordeiro MN; Gomes JR J Phys Chem A; 2014 Aug; 118(31):5832-40. PubMed ID: 24547954 [TBL] [Abstract][Full Text] [Related]
17. Origin of Thermal and Hyperthermal CO Zhou L; Kandratsenka A; Campbell CT; Wodtke AM; Guo H Angew Chem Int Ed Engl; 2019 May; 58(21):6916-6920. PubMed ID: 30861588 [TBL] [Abstract][Full Text] [Related]
18. Dissociative chemisorption of methane on Ni and Pt surfaces: mode-specific chemistry and the effects of lattice motion. Nave S; Tiwari AK; Jackson B J Phys Chem A; 2014 Oct; 118(41):9615-31. PubMed ID: 25153478 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. Ludwig J; Vlachos DG; van Duin AC; Goddard WA J Phys Chem B; 2006 Mar; 110(9):4274-82. PubMed ID: 16509724 [TBL] [Abstract][Full Text] [Related]
20. The molecular dynamics of adsorption and dissociation of O2 on Pt(553). Jacobse L; den Dunnen A; Juurlink LB J Chem Phys; 2015 Jul; 143(1):014703. PubMed ID: 26156488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]