BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30195539)

  • 1. Tucum-do-cerrado (Bactris setosa Mart.) may enhance hepatic glucose response by suppressing gluconeogenesis and upregulating Slc2a2 via AMPK pathway, even in a moderate iron supplementation condition.
    Heibel AB; da Cunha MSB; Ferraz CTS; Arruda SF
    Food Res Int; 2018 Nov; 113():433-442. PubMed ID: 30195539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tucum-do-Cerrado (Bactris setosa Mart.) May Promote Anti-Aging Effect by Upregulating SIRT1-Nrf2 Pathway and Attenuating Oxidative Stress and Inflammation.
    da Cunha MSB; Arruda SF
    Nutrients; 2017 Nov; 9(11):. PubMed ID: 29135935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.
    Fustinoni-Reis AM; Arruda SF; Dourado LP; da Cunha MS; Siqueira EM
    Nutrients; 2016 Feb; 8(2):38. PubMed ID: 26901220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Action of JAK/STAT3 and BMP/HJV/SMAD Signaling Pathways on Hepcidin Suppression by Tucum-do-Cerrado in a Normal and Iron-Enriched Diets.
    Arruda SF; Ramos LV; Barbosa JLA; Hankins NAC; Rodrigues PAM; Cunha MSBD
    Nutrients; 2020 May; 12(5):. PubMed ID: 32456060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ameliorating the impairment of glucose utilization in a high-fat diet-induced obesity model through the consumption of Tucum-do-Cerrado (Bactris Setosa Mart.).
    Araújo AM; Arruda SF
    PLoS One; 2024; 19(1):e0293627. PubMed ID: 38206915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart), Brazil's Native Fruit.
    Rosa FR; Arruda AF; Siqueira EM; Arruda SF
    Nutrients; 2016 Feb; 8(3):110. PubMed ID: 26907338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tucum-do-cerrado (Bactris setosa Mart.) modulates oxidative stress, inflammation, and apoptosis-related proteins in rats treated with azoxymethane.
    Campos NA; da Cunha MSB; Arruda SF
    PLoS One; 2018; 13(11):e0206670. PubMed ID: 30427888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado (
    da Silva RC; Fagundes RR; Faber KN; Campos ÉG
    Nutr Cancer; 2022; 74(10):3723-3734. PubMed ID: 35703849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice.
    Ballard CR; Dos Santos EF; Dubois MJ; Pilon G; Cazarin CBB; Maróstica Junior MR; Marette A
    Food Funct; 2020 Oct; 11(10):8800-8810. PubMed ID: 32959866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compounds of tucum-do-cerrado (
    Dantas MBVC; Júnior ORP; Campos LTP; Campos ÉG
    Nat Prod Res; 2023 Mar; 37(5):793-797. PubMed ID: 35671367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadate treatment of diabetic rats reverses the impaired expression of genes involved in hepatic glucose metabolism: effects on glycolytic and gluconeogenic enzymes, and on glucose transporter GLUT2.
    Brichard SM; Desbuquois B; Girard J
    Mol Cell Endocrinol; 1993 Feb; 91(1-2):91-7. PubMed ID: 8472858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of coffee consumption on glucose homeostasis and redox-inflammatory responses in high-fat diet-induced obese rats.
    Ramos LV; da Costa THM; Arruda SF
    J Nutr Biochem; 2022 Feb; 100():108881. PubMed ID: 34653600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of excess dietary iron and fat on glucose and lipid metabolism.
    Choi JS; Koh IU; Lee HJ; Kim WH; Song J
    J Nutr Biochem; 2013 Sep; 24(9):1634-44. PubMed ID: 23643521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout.
    Kirchner S; Panserat S; Lim PL; Kaushik S; Ferraris RP
    J Comp Physiol B; 2008 Mar; 178(3):429-38. PubMed ID: 18180932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resveratrol Improves Glycemic Control in Type 2 Diabetic Obese Mice by Regulating Glucose Transporter Expression in Skeletal Muscle and Liver.
    Yonamine CY; Pinheiro-Machado E; Michalani ML; Alves-Wagner AB; Esteves JV; Freitas HS; Machado UF
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28708105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vernonia amygdalina Delile extract inhibits the hepatic gluconeogenesis through the activation of adenosine-5'monophosph kinase.
    Wu XM; Ren T; Liu JF; Liu YJ; Yang LC; Jin X
    Biomed Pharmacother; 2018 Jul; 103():1384-1391. PubMed ID: 29864922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vernonia amygdalina simultaneously suppresses gluconeogenesis and potentiates glucose oxidation via the pentose phosphate pathway in streptozotocin-induced diabetic rats.
    Atangwho IJ; Yin KB; Umar MI; Ahmad M; Asmawi MZ
    BMC Complement Altern Med; 2014 Oct; 14():426. PubMed ID: 25358757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenesis of hyperglycemia in genetically obese-hyperglycemic rats, Wistar fatty: presence of hepatic insulin resistance.
    Sugiyama Y; Shimura Y; Ikeda H
    Endocrinol Jpn; 1989 Feb; 36(1):65-73. PubMed ID: 2543549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats.
    Vinayagam R; Jayachandran M; Chung SSM; Xu B
    Biomed Pharmacother; 2018 Jul; 103():1012-1017. PubMed ID: 29710658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.
    Oakes ND; Cooney GJ; Camilleri S; Chisholm DJ; Kraegen EW
    Diabetes; 1997 Nov; 46(11):1768-74. PubMed ID: 9356024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.