These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30195648)

  • 21. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.
    Grymonpré W; Verstraete G; Vanhoorne V; Remon JP; De Beer T; Vervaet C
    Eur J Pharm Biopharm; 2018 Mar; 124():43-54. PubMed ID: 29248561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melt granulation of pharmaceutical powders: a comparison of high-shear mixer and fluidised bed processes.
    Passerini N; Calogerà G; Albertini B; Rodriguez L
    Int J Pharm; 2010 May; 391(1-2):177-86. PubMed ID: 20214959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foam granulation: new developments in pharmaceutical solid oral dosage forms using twin screw extrusion machinery.
    Thompson MR; Weatherley S; Pukadyil RN; Sheskey PJ
    Drug Dev Ind Pharm; 2012 Jul; 38(7):771-84. PubMed ID: 22085462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of in situ fluid bed melt granulation using response surface methodology.
    Kukec S; Vrečer F; Dreu R
    Acta Pharm; 2012 Dec; 62(4):497-513. PubMed ID: 23333886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of the physical state of binders on high-shear wet granulation and granule properties: a mechanistic approach to understand the high-shear wet granulation process. part IV. the impact of rheological state and tip-speeds.
    Li J; Tao L; Buckley D; Tao J; Gao J; Hubert M
    J Pharm Sci; 2013 Dec; 102(12):4384-94. PubMed ID: 24135976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of hollow core granules by fluid bed in situ melt granulation: modelling and experiments.
    Ansari MA; Stepanek F
    Int J Pharm; 2006 Sep; 321(1-2):108-16. PubMed ID: 16787722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation on side-spray fluidized bed granulation with swirling airflow.
    Wong PM; Chan LW; Heng PW
    AAPS PharmSciTech; 2013 Mar; 14(1):211-21. PubMed ID: 23263750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling granule size by granulation liquid feed pulsing.
    Närvänen T; Lipsanen T; Antikainen O; Räikkönen H; Yliruusi J
    Int J Pharm; 2008 Jun; 357(1-2):132-8. PubMed ID: 18343060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of melting and rheological properties of fatty binders on the melt granulation process in a high-shear mixer.
    Evrard B; Amighi K; Beten D; Delattre L; Moës AJ
    Drug Dev Ind Pharm; 1999 Nov; 25(11):1177-84. PubMed ID: 10596355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.
    Loh ZH; Sia BY; Heng PW; Lee CC; Liew CV
    AAPS PharmSciTech; 2011 Dec; 12(4):1374-83. PubMed ID: 22005957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.
    Monteyne T; Vancoillie J; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2016 Oct; 107():249-62. PubMed ID: 27449628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ droplet size and speed determination in a fluid-bed granulator.
    Ehlers H; Larjo J; Antikainen O; Räikkönen H; Heinämäki J; Yliruusi J
    Int J Pharm; 2010 May; 391(1-2):148-54. PubMed ID: 20211713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of physical properties of PEG 6000 on pellets produced by melt pelletization.
    Wong TW; Wan LS; Heng PW
    Pharm Dev Technol; 1999 Aug; 4(3):449-56. PubMed ID: 10434291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of a 2-step agglomeration process performed in a rotary processor using polyethylene glycol solutions as the primary binder liquid.
    Kristensen J
    AAPS PharmSciTech; 2006 Oct; 7(4):89. PubMed ID: 17233541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of a viscous binder during high shear granulation--sensitivity to the method of delivery and its impact on product properties.
    Tan BM; Loh ZH; Soh JL; Liew CV; Heng PW
    Int J Pharm; 2014 Jan; 460(1-2):255-63. PubMed ID: 24269207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms.
    Meng W; Kotamarthy L; Panikar S; Sen M; Pradhan S; Marc M; Litster JD; Muzzio FJ; Ramachandran R
    Int J Pharm; 2016 Nov; 513(1-2):357-375. PubMed ID: 27633277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of binder in granules produced by means of twin screw granulation.
    Fonteyne M; Fussell AL; Vercruysse J; Vervaet C; Remon JP; Strachan C; Rades T; De Beer T
    Int J Pharm; 2014 Feb; 462(1-2):8-10. PubMed ID: 24361911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.
    Liu H; Li M
    Int J Pharm; 2014 Jul; 468(1-2):223-33. PubMed ID: 24732033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melt pelletization with polyethylene glycol in a rotary processor.
    Vilhelmsen T; Kristensen J; Schaefer T
    Int J Pharm; 2004 May; 275(1-2):141-53. PubMed ID: 15081145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic modelling of fluid bed granulation, Part I: Agglomeration in pilot scale process.
    Askarishahi M; Maus M; Schröder D; Slade D; Martinetz M; Jajcevic D
    Int J Pharm; 2020 Jan; 573():118837. PubMed ID: 31715361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.