BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 30195803)

  • 21. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs.
    Clement S; Chen W; Deng W; Goldys EM
    Int J Nanomedicine; 2018; 13():3553-3570. PubMed ID: 29950835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monodisperse and Uniform Mesoporous Silicate Nanosensitizers Achieve Low-Dose X-Ray-Induced Deep-Penetrating Photodynamic Therapy.
    Sun W; Shi T; Luo L; Chen X; Lv P; Lv Y; Zhuang Y; Zhu J; Liu G; Chen X; Chen H
    Adv Mater; 2019 Apr; 31(16):e1808024. PubMed ID: 30848541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics.
    Ahmad F; Wang X; Jiang Z; Yu X; Liu X; Mao R; Chen X; Li W
    ACS Nano; 2019 Sep; 13(9):10419-10433. PubMed ID: 31430127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimising FRET-efficiency of Nd
    Lin SL; Chang CA
    Nanoscale; 2020 Apr; 12(16):8742-8749. PubMed ID: 32307477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Versatile Imaging and Therapeutic Platform Based on Dual-Band Luminescent Lanthanide Nanoparticles toward Tumor Metastasis Inhibition.
    Li Y; Tang J; Pan DX; Sun LD; Chen C; Liu Y; Wang YF; Shi S; Yan CH
    ACS Nano; 2016 Feb; 10(2):2766-73. PubMed ID: 26794807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors.
    Wang J; Zhang H; Xiao X; Liang D; Liang X; Mi L; Wang J; Liu J
    Acta Biomater; 2020 Apr; 107():260-271. PubMed ID: 32147471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells.
    Jin S; Zhou L; Gu Z; Tian G; Yan L; Ren W; Yin W; Liu X; Zhang X; Hu Z; Zhao Y
    Nanoscale; 2013 Dec; 5(23):11910-8. PubMed ID: 24129918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications.
    Sun W; Zhou Z; Pratx G; Chen X; Chen H
    Theranostics; 2020; 10(3):1296-1318. PubMed ID: 31938066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new X-ray activated nanoparticle photosensitizer for cancer treatment.
    Ma L; Zou X; Chen W
    J Biomed Nanotechnol; 2014 Aug; 10(8):1501-8. PubMed ID: 25016650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy.
    Micheletto MC; Guidelli ÉJ; Costa-Filho AJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2289-2302. PubMed ID: 33405500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-Doped TiO
    Yang CC; Tsai MH; Li KY; Hou CH; Lin FH
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy.
    Torres-Martínez A; Bedrina B; Falomir E; Marín MJ; Angulo-Pachón CA; Galindo F; Miravet JF
    ACS Appl Bio Mater; 2021 Apr; 4(4):3658-3669. PubMed ID: 35014451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites.
    Zeng L; Luo L; Pan Y; Luo S; Lu G; Wu A
    Nanoscale; 2015 May; 7(19):8946-54. PubMed ID: 25920333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray excited luminescent nanoparticles for deep photodynamic therapy.
    Yao B; Liu X; Zhang W; Lu H
    RSC Adv; 2023 Oct; 13(43):30133-30150. PubMed ID: 37849702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic-sonodynamic antibacterial resistance therapy.
    Xu F; Hu M; Liu C; Choi SK
    Biomater Sci; 2017 Mar; 5(4):678-685. PubMed ID: 28280817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Real-Time Dose-Effect Relationship Monitoring in Photodynamic Therapy.
    Wang H; Wang Z; Li Y; Xu T; Zhang Q; Yang M; Wang P; Gu Y
    Small; 2019 Sep; 15(39):e1902185. PubMed ID: 31389152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.
    Zeng L; Pan Y; Zou R; Zhang J; Tian Y; Teng Z; Wang S; Ren W; Xiao X; Zhang J; Zhang L; Li A; Lu G; Wu A
    Biomaterials; 2016 Oct; 103():116-127. PubMed ID: 27376560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer.
    Sztandera K; Marcinkowska M; Gorzkiewicz M; Janaszewska A; Laurent R; Zabłocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32585884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of polyallylamine-coated nanoparticles on the optical and photochemical properties of rose bengal.
    Lin KY; Tsay YG; Chang CA
    J Chin Med Assoc; 2022 Sep; 85(9):901-908. PubMed ID: 35666599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.