BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30195851)

  • 1. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor.
    Shahabpoor E; Pavic A
    J Biomech; 2018 Oct; 79():181-190. PubMed ID: 30195851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units.
    Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments.
    Shahabpoor E; Pavic A
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.
    Guo Y; Storm F; Zhao Y; Billings SA; Pavic A; Mazzà C; Guo LZ
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28937593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit.
    Miyazaki T; Kawada M; Nakai Y; Kiyama R; Yone K
    Biomed Res Int; 2019; 2019():8123467. PubMed ID: 31930138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating Vertical Ground Reaction Force during Walking Using a Single Inertial Sensor.
    Jiang X; Napier C; Hannigan B; Eng JJ; Menon C
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single Sacral-Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction Force, Contact Time, and Flight Time in Running.
    Patoz A; Lussiana T; Breine B; Gindre C; Malatesta D
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach.
    LeBlanc B; Hernandez EM; McGinnis RS; Gurchiek RD
    J Biomech; 2021 Jan; 115():110130. PubMed ID: 33257007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies.
    Shahabpoor E; Pavic A
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28895909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating vertical ground reaction forces during gait from lower limb kinematics and vertical acceleration using wearable inertial sensors.
    Martínez-Pascual D; Catalán JM; Blanco-Ivorra A; Sanchís M; Arán-Ais F; García-Aracil N
    Front Bioeng Biotechnol; 2023; 11():1199459. PubMed ID: 37840666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning.
    Sharma D; Davidson P; Müller P; Piché R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of gait kinetics in post-menopausal women using tri-axial ankle accelerometers during barefoot walking.
    Madansingh SI; Murphree DH; Kaufman KR; Fortune E
    Gait Posture; 2019 Mar; 69():85-90. PubMed ID: 30682643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spring-loaded inverted pendulum modeling improves neural network estimation of ground reaction forces.
    Kim B; Lim H; Park S
    J Biomech; 2020 Dec; 113():110069. PubMed ID: 33142204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable Gait Lab: Estimating Over-Ground 3D Ground Reaction Forces Using Only a Pelvis IMU.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study.
    Simonetti E; Bergamini E; Vannozzi G; Bascou J; Pillet H
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.