These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 30195851)

  • 21. Predicting vertical and shear ground reaction forces during walking and jogging using wearable plantar pressure insoles.
    Hajizadeh M; Clouthier AL; Kendall M; Graham RB
    Gait Posture; 2023 Jul; 104():90-96. PubMed ID: 37348185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A wearable solution for accurate step detection based on the direct measurement of the inter-foot distance.
    Bertuletti S; Della Croce U; Cereatti A
    J Biomech; 2019 Feb; 84():274-277. PubMed ID: 30630626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer.
    Ngoh KJ; Gouwanda D; Gopalai AA; Chong YZ
    J Biomech; 2018 Jul; 76():269-273. PubMed ID: 29945786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New method for assessment of gait variability based on wearable ground reaction force sensor.
    Liu T; Inoue Y; Shibata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2341-4. PubMed ID: 19163171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life.
    Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of IMU position and orientation placement errors on ground reaction force estimation.
    Tan T; Chiasson DP; Hu H; Shull PB
    J Biomech; 2019 Dec; 97():109416. PubMed ID: 31630774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting Ground Reaction Force from a Hip-Borne Accelerometer during Load Carriage.
    Neugebauer JM; Lafiandra M
    Med Sci Sports Exerc; 2018 Nov; 50(11):2369-2374. PubMed ID: 29889819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of the vertical ground reaction force component prior to gait transition.
    Li L; Hamill J
    Res Q Exerc Sport; 2002 Sep; 73(3):229-37. PubMed ID: 12230329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of the validity and reliability of sprint performance metrics computed using inertial sensors: A systematic review.
    Macadam P; Cronin J; Neville J; Diewald S
    Gait Posture; 2019 Sep; 73():26-38. PubMed ID: 31299501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An algorithm to decompose ground reaction forces and moments from a single force platform in walking gait.
    Villeger D; Costes A; Watier B; Moretto P
    Med Eng Phys; 2014 Nov; 36(11):1530-5. PubMed ID: 25239287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking.
    Jung Y; Jung M; Lee K; Koo S
    J Biomech; 2014 Aug; 47(11):2693-9. PubMed ID: 24917473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit.
    Faber GS; Koopman AS; Kingma I; Chang CC; Dennerlein JT; van Dieën JH
    J Biomech; 2018 Mar; 70():235-241. PubMed ID: 29157658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running.
    Day EM; Alcantara RS; McGeehan MA; Grabowski AM; Hahn ME
    J Biomech; 2021 Apr; 119():110323. PubMed ID: 33609984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks.
    Gurchiek RD; McGinnis RS; Needle AR; McBride JM; van Werkhoven H
    J Biomech; 2017 Aug; 61():263-268. PubMed ID: 28830590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods.
    Storm FA; Buckley CJ; Mazzà C
    Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System.
    Hsu CY; Tsai YS; Yau CS; Shie HH; Wu CM
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27455281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data.
    Weidmann A; Taetz B; Andres M; Laufer F; Bleser G
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33049916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.