These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 301959)
1. [Analysis of the relationship between the rate and force of myocardial contractions in dogs, rats and frogs]. Kiselev VD Kardiologiia; 1977 May; 17(5):133-7. PubMed ID: 301959 [TBL] [Abstract][Full Text] [Related]
2. [Relationship between the ATPase activity, actomyosin and cardiac myofibrils of dogs, rats and frogs and their physiological characteristics]. Kiselev VD Kardiologiia; 1979 Jan; 19(1):107-12. PubMed ID: 35640 [No Abstract] [Full Text] [Related]
3. [Function of cardiac sarcoplasmic reticulum and left ventricular diastolic properties]. Maeba T; Kazuno H; Ishiai S; Tanaka S; Nomura S; Maeda N; Nooso M; Kawakami S; Senoo Y; Teramoto S Kokyu To Junkan; 1984 Mar; 32(3):293-7. PubMed ID: 6739980 [No Abstract] [Full Text] [Related]
4. On the metabolic basis of pseudopotentiation and superposition in the frog myocardium. Szymanski G; Zett L Biomed Biochim Acta; 1986; 45(1-2):S195-7. PubMed ID: 3485971 [TBL] [Abstract][Full Text] [Related]
5. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling. de Belchior AC; Freire DD; da Costa CP; Vassallo DV; Padilha AS; Dos Santos L J Appl Physiol (1985); 2016 Feb; 120(3):344-50. PubMed ID: 26586904 [TBL] [Abstract][Full Text] [Related]
6. Compensatory adaptation of the heart to chronic rate overload: increase in calcium transport ATPase activity of myocardial sarcoplasmic reticulum. O'Brien PJ; Ling E; Williams HM; Brotherton S; Salerno T; Lumsden JH; Ianuzzo CD Can J Cardiol; 1988; 4(5):243-50. PubMed ID: 2970289 [TBL] [Abstract][Full Text] [Related]
7. [Relationship between the amplitude of myocardial contractions in frogs and the frequency of electrical stimulation. Role of external and intracellular calcium in the coupling of excitation and contraction]. Khodorov BI; Mukumov MR; Kitaĭgorodskaia GM; Khodorova AB Biofizika; 1977; 22(5):901-9. PubMed ID: 911912 [TBL] [Abstract][Full Text] [Related]
8. Excitation-contraction coupling in zebrafish ventricular myocardium is regulated by trans-sarcolemmal Ca2+ influx and sarcoplasmic reticulum Ca2+ release. Haustein M; Hannes T; Trieschmann J; Verhaegh R; Köster A; Hescheler J; Brockmeier K; Adelmann R; Khalil M PLoS One; 2015; 10(5):e0125654. PubMed ID: 25938412 [TBL] [Abstract][Full Text] [Related]
9. Differences in Ca(2+)-handling and sarcoplasmic reticulum Ca(2+)-content in isolated rat and rabbit myocardium. Maier LS; Bers DM; Pieske B J Mol Cell Cardiol; 2000 Dec; 32(12):2249-58. PubMed ID: 11113000 [TBL] [Abstract][Full Text] [Related]
10. Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Maier LS; Wahl-Schott C; Horn W; Weichert S; Pagel C; Wagner S; Dybkova N; Müller OJ; Näbauer M; Franz WM; Pieske B Cardiovasc Res; 2005 Sep; 67(4):636-46. PubMed ID: 15932750 [TBL] [Abstract][Full Text] [Related]
11. [Role of intracellular Ca-depots in the mechanism of action of caffeine on excitation-contraction coupling in the frog myocardium]. Kitaĭgorodskaia GM; Mukumov MR; Dmitrieva NV Biofizika; 1981; 26(4):669-74. PubMed ID: 6974571 [TBL] [Abstract][Full Text] [Related]
12. Rest-dependence of twitch amplitude and sarcoplasmic reticulum calcium content in the developing rat myocardium. Ferraz SA; Bassani JW; Bassani RA J Mol Cell Cardiol; 2001 Apr; 33(4):711-22. PubMed ID: 11273724 [TBL] [Abstract][Full Text] [Related]
13. Calcium and cardiac excitation-contraction coupling. Fabiato A; Fabiato F Annu Rev Physiol; 1979; 41():473-84. PubMed ID: 373601 [No Abstract] [Full Text] [Related]
14. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Cittadini A; Monti MG; Iaccarino G; Di Rella F; Tsichlis PN; Di Gianni A; Strömer H; Sorriento D; Peschle C; Trimarco B; Saccà L; Condorelli G Gene Ther; 2006 Jan; 13(1):8-19. PubMed ID: 16094411 [TBL] [Abstract][Full Text] [Related]
15. Intracellular calcium transients underlying interval-force relationship in whole rat hearts: effects of calcium antagonists. Zaugg CE; Kojima S; Wu ST; Wikman-Coffelt J; Parmley WW; Buser PT Cardiovasc Res; 1995 Aug; 30(2):212-21. PubMed ID: 7585808 [TBL] [Abstract][Full Text] [Related]
16. The effect of menadione on sarcoplasmic reticulum Ca2+ and contractions of single guinea-pig cardiomyocytes. Lewartowski B; Zdanowski K; Wolska BM J Physiol Pharmacol; 1991 Jun; 42(2):221-34. PubMed ID: 1782417 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous versus triggered contractions of "calcium-tolerant" cardiac cells from the adult rat ventricle. Fabiato A Basic Res Cardiol; 1985; 80 Suppl 2():83-7. PubMed ID: 4062839 [TBL] [Abstract][Full Text] [Related]
18. Alterations of contractility and sarcoplasmic reticulum function of rat heart in experimental hypo- and hyperthyroidism. Takács IE; Szabó J; Nosztray K; Szentmiklósi AJ; Cseppentö A; Szegi J Gen Physiol Biophys; 1985 Jun; 4(3):271-8. PubMed ID: 3161777 [TBL] [Abstract][Full Text] [Related]
19. Influence of the sarcoplasmic reticulum on the inotropic responses of the rat myocardium resulting from changes in rate and rhythm. Mill JG; Vassallo DV; Leite CM; Campagnaro P Braz J Med Biol Res; 1994 Jun; 27(6):1455-65. PubMed ID: 7894361 [TBL] [Abstract][Full Text] [Related]
20. [Effects of caffeine on post-extrasystolic potentiation and mechanical restitution in mammalian papillary muscle]. Ibarra J; Arias R; Valenzuela F Arch Inst Cardiol Mex; 1989; 59(4):361-6. PubMed ID: 2818093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]