These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30196197)

  • 1. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide.
    Ma J; Wang P; Dong L; Ruan Y; Lu H
    J Colloid Interface Sci; 2019 Jan; 534():12-19. PubMed ID: 30196197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor.
    Wang Z; Zhang QE; Long S; Luo Y; Yu P; Tan Z; Bai J; Qu B; Yang Y; Shi J; Zhou H; Xiao ZY; Hong W; Bai H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10437-10444. PubMed ID: 29543426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly compressible 3D periodic graphene aerogel microlattices.
    Zhu C; Han TY; Duoss EB; Golobic AM; Kuntz JD; Spadaccini CM; Worsley MA
    Nat Commun; 2015 Apr; 6():6962. PubMed ID: 25902277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.
    Bi H; Lin T; Xu F; Tang Y; Liu Z; Huang F
    Nano Lett; 2016 Jan; 16(1):349-54. PubMed ID: 26641709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.
    Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Bicontinuous Graphene Monolith from Polymer Templates.
    Liu K; Chen YM; Policastro GM; Becker ML; Zhu Y
    ACS Nano; 2015 Jun; 9(6):6041-9. PubMed ID: 26047393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection.
    Ma J; Wang P; Chen H; Bao S; Chen W; Lu H
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8527-8536. PubMed ID: 30730127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing.
    Chen Y; Yu Z; Ye Y; Zhang Y; Li G; Jiang F
    ACS Nano; 2021 Jan; 15(1):1869-1879. PubMed ID: 33448788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing 3D Graphene Networks in Polymer Composites for Significantly Improved Electrical and Mechanical Properties.
    Wang P; Chong H; Zhang J; Lu H
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22006-22017. PubMed ID: 28603965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience.
    Yang M; Zhao N; Cui Y; Gao W; Zhao Q; Gao C; Bai H; Xie T
    ACS Nano; 2017 Jul; 11(7):6817-6824. PubMed ID: 28636356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sheet Size-Induced Evaporation Behaviors of Inkjet-Printed Graphene Oxide for Printed Electronics.
    Kim H; Jang JI; Kim HH; Lee GW; Lim JA; Han JT; Cho K
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3193-9. PubMed ID: 26824166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.