These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 30196307)
1. Label-Free Spectral Imaging Unveils Biochemical Mechanisms of Low-Level Laser Therapy on Spinal Cord Injury. Gong Y; Wang S; Liang Z; Wang Z; Zhang X; Li J; Song J; Hu X; Wang K; He Q; Bai J Cell Physiol Biochem; 2018; 49(3):1127-1142. PubMed ID: 30196307 [TBL] [Abstract][Full Text] [Related]
2. Study on the pathological and biomedical characteristics of spinal cord injury by confocal Raman microspectral imaging. Li J; Liang Z; Wang S; Wang Z; Zhang X; Hu X; Wang K; He Q; Bai J Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():148-158. PubMed ID: 30453190 [TBL] [Abstract][Full Text] [Related]
3. Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats. Janzadeh A; Sarveazad A; Yousefifard M; Dameni S; Samani FS; Mokhtarian K; Nasirinezhad F Neuropeptides; 2017 Oct; 65():90-99. PubMed ID: 28716393 [TBL] [Abstract][Full Text] [Related]
4. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652 [TBL] [Abstract][Full Text] [Related]
5. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Zhang SX; Geddes JW; Owens JL; Holmberg EG Histol Histopathol; 2005 Apr; 20(2):519-30. PubMed ID: 15736057 [TBL] [Abstract][Full Text] [Related]
6. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury. Vitellaro-Zuccarello L; Mazzetti S; Madaschi L; Bosisio P; Gorio A; De Biasi S Neuroscience; 2007 Feb; 144(3):865-77. PubMed ID: 17141961 [TBL] [Abstract][Full Text] [Related]
7. Studying on the in vivo pathological evolution of spinal cord injury with the rat model by the method of integrated multispectral imaging and Raman spectroscopy. Lu Y; Liang Z; Wu Z; Liu J; Ren D; Chu J; Xu J; Zeng H; Wang Z; Wang S Talanta; 2024 Nov; 279():126672. PubMed ID: 39111219 [TBL] [Abstract][Full Text] [Related]
8. Interferon-γ decreases chondroitin sulfate proteoglycan expression and enhances hindlimb function after spinal cord injury in mice. Fujiyoshi T; Kubo T; Chan CC; Koda M; Okawa A; Takahashi K; Yamazaki M J Neurotrauma; 2010 Dec; 27(12):2283-94. PubMed ID: 20925481 [TBL] [Abstract][Full Text] [Related]
9. Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats. Kim BG; Dai HN; Lynskey JV; McAtee M; Bregman BS J Comp Neurol; 2006 Jul; 497(2):182-98. PubMed ID: 16705682 [TBL] [Abstract][Full Text] [Related]
10. Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats. Veronez S; Assis L; Del Campo P; de Oliveira F; de Castro G; Renno AC; Medalha CC Lasers Med Sci; 2017 Feb; 32(2):343-349. PubMed ID: 27909916 [TBL] [Abstract][Full Text] [Related]
11. Regulation of chondroitin sulphate proteoglycan and reactive gliosis after spinal cord transection: effects of peripheral nerve graft and fibroblast growth factor 1. Lee MJ; Chen CJ; Huang WC; Huang MC; Chang WC; Kuo HS; Tsai MJ; Lin YL; Cheng H Neuropathol Appl Neurobiol; 2011 Oct; 37(6):585-99. PubMed ID: 21486314 [TBL] [Abstract][Full Text] [Related]
12. The role of low level laser therapy on neuropathic pain relief and interleukin-6 expression following spinal cord injury: An experimental study. Mojarad N; Janzadeh A; Yousefifard M; Nasirinezhad F J Chem Neuroanat; 2018 Jan; 87():60-70. PubMed ID: 28428016 [TBL] [Abstract][Full Text] [Related]
13. Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway. Zhu S; Ma H; Hou M; Li H; Ning G Neurochem Res; 2024 Aug; 49(8):2120-2130. PubMed ID: 38819695 [TBL] [Abstract][Full Text] [Related]
14. Antisense vimentin cDNA combined with chondroitinase ABC promotes axon regeneration and functional recovery following spinal cord injury in rats. Xia Y; Yan Y; Xia H; Zhao T; Chu W; Hu S; Feng H; Lin J Neurosci Lett; 2015 Mar; 590():74-9. PubMed ID: 25641132 [TBL] [Abstract][Full Text] [Related]
15. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Lemons ML; Howland DR; Anderson DK Exp Neurol; 1999 Nov; 160(1):51-65. PubMed ID: 10630190 [TBL] [Abstract][Full Text] [Related]
16. Raman spectroscopic investigation of spinal cord injury in a rat model. Saxena T; Deng B; Stelzner D; Hasenwinkel J; Chaiken J J Biomed Opt; 2011 Feb; 16(2):027003. PubMed ID: 21361706 [TBL] [Abstract][Full Text] [Related]
17. Confocal raman microspectral imaging of ex vivo human spinal cord tissue. Wang S; Liang Z; Gong Y; Yin Y; Wang K; He Q; Wang Z; Bai J J Photochem Photobiol B; 2016 Oct; 163():177-84. PubMed ID: 27588715 [TBL] [Abstract][Full Text] [Related]
18. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury. Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079 [TBL] [Abstract][Full Text] [Related]